289 resultados para Anthropology of science and technology
em Queensland University of Technology - ePrints Archive
Resumo:
This study explores coteaching/cogenerative dialoguing with parents to investigate how it may be employed to engage parents more meaningfully in schools. The cogens provided a space where participants became aware of resources available for coteaching, made decisions about planning and enacting coteaching, as well as interstitial culture that facilitated positive parent-teacher relationships.
Resumo:
The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus was first described in 1984. The assessment of osteoporosis by BUA has recently been recognized by Universities UK, within its EurekaUK book, as being one of the “100 discoveries and developments in UK Universities that have changed the world” over the past 50 years, covering the whole academic spectrum from the arts and humanities to science and technology. Indeed, BUA technique has been clinically validated and is utilized worldwide, with at least seven commercial systems providing calcaneal BUA measurement. However, a fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone is still lacking. This review aims to provide a science- and technology-orientated perspective on the application of BUA to the medical disease of osteoporosis.
Resumo:
This document is an adaptation of a report submitted to the ALTC in 2009, with additional data collected through subsequent interviews with science supervisors. The organisation of the contents also reflects a development of thought since the original project. The framework presented in this document is intended to provide science and technology supervisors with a range of options with respect to supervisory pedagogy. It has been developed to highlight different aspects of thinking about supervision as a teaching and learning practice; as well as approaches, strategies and roles associated with supervision. It will enable science and technology supervisors to become aware of the diverse options available to them and provide systematic ways of thinking about supervisory practices. Use of this framework will encourage supervisors to make choices based on broader, rather than more limited, repertoires. It will also encourage thinking about supervision as a teaching and learning practice.
Resumo:
There exists a general consensus in the science education literature around the goal of enhancing students. and teachers. views of nature of science (NOS). An emerging area of research in science education explores NOS and argumentation, and the aim of this study was to explore the effectiveness of a science content course incorporating explicit NOS and argumentation instruction on preservice primary teachers. views of NOS. A constructivist perspective guided the study, and the research strategy employed was case study research. Five preservice primary teachers were selected for intensive investigation in the study, which incorporated explicit NOS and argumentation instruction, and utilised scientific and socioscientific contexts for argumentation to provide opportunities for participants to apply their NOS understandings to their arguments. Four primary sources of data were used to provide evidence for the interpretations, recommendations, and implications that emerged from the study. These data sources included questionnaires and surveys, interviews, audio- and video-taped class sessions, and written artefacts. Data analysis involved the formation of various assertions that informed the major findings of the study, and a variety of validity and ethical protocols were considered during the analysis to ensure the findings and interpretations emerging from the data were valid. Results indicated that the science content course was effective in enabling four of the five participants. views of NOS to be changed. All of the participants expressed predominantly limited views of the majority of the examined NOS aspects at the commencement of the study. Many positive changes were evident at the end of the study with four of the five participants expressing partially informed and/or informed views of the majority of the examined NOS aspects. A critical analysis of the effectiveness of the various course components designed to facilitate the development of participants‟ views of NOS in the study, led to the identification of three factors that mediated the development of participants‟ NOS views: (a) contextual factors (including context of argumentation, and mode of argumentation), (b) task-specific factors (including argumentation scaffolds, epistemological probes, and consideration of alternative data and explanations), and (c) personal factors (including perceived previous knowledge about NOS, appreciation of the importance and utility value of NOS, and durability and persistence of pre-existing beliefs). A consideration of the above factors informs recommendations for future studies that seek to incorporate explicit NOS and argumentation instruction as a context for learning about NOS.
Resumo:
This special issue aims to provide up-to-date knowledge and the latest scientific concepts and technological developments in the processing, characterization, testing, mechanics, modeling and applications of a broad range of advanced materials. The many contributors, from Denmark, Germany, UK, Iran, Saudi Arabia, Malaysia, Japan, the People’s Republic of China, Singapore, Taiwan, USA, New Zealand and Australia, present a wide range of topics including: nanomaterials, thin films and coatings, metals and alloys, composite materials, materials processing and characterization, biomaterials and biomechanics, and computational materials science and simulation. The work will therefore be of great interest to a broad spectrum of researchers and technologists.
Resumo:
Concerns raised in educational reports about school science in terms of students. outcomes and attitudes, as well as science teaching practices prompted investigation into science learning and teaching practices at the foundational level of school science. Without science content and process knowledge, understanding issues of modern society and active participation in decision-making is difficult. This study contended that a focus on the development of the language of science could enable learners to engage more effectively in learning science and enhance their interest and attitudes towards science. Furthermore, it argued that explicit teaching practices where science language is modelled and scaffolded would facilitate the learning of science by young children at the beginning of their formal schooling. This study aimed to investigate science language development at the foundational level of school science learning in the preparatory-school with students aged five and six years. It focussed on the language of science and science teaching practices in early childhood. In particular, the study focussed on the capacity for young students to engage with and understand science language. Previous research suggests that students have difficulty with the language of science most likely because of the complexities and ambiguities of science language. Furthermore, literature indicates that tensions transpire between traditional science teaching practices and accepted early childhood teaching practices. This contention prompted investigation into means and models of pedagogy for learning foundational science language, knowledge and processes in early childhood. This study was positioned within qualitative assumptions of research and reported via descriptive case study. It was located in a preparatory-school classroom with the class teacher, teacher-aide, and nineteen students aged four and five years who participated with the researcher in the study. Basil Bernstein.s pedagogical theory coupled with Halliday.s Systemic Functional Linguistics (SFL) framed an examination of science pedagogical practices for early childhood science learning. Students. science learning outcomes were gauged by focussing a Hallydayan lens on their oral and reflective language during 12 science-focussed episodes of teaching. Data were collected throughout the 12 episodes. Data included video and audio-taped science activities, student artefacts, journal and anecdotal records, semi-structured interviews and photographs. Data were analysed according to Bernstein.s visible and invisible pedagogies and performance and competence models. Additionally, Halliday.s SFL provided the resource to examine teacher and student language to determine teacher/student interpersonal relationships as well as specialised science and everyday language used in teacher and student science talk. Their analysis established the socio-linguistic characteristics that promoted science competencies in young children. An analysis of the data identified those teaching practices that facilitate young children.s acquisition of science meanings. Positive indications for modelling science language and science text types to young children have emerged. Teaching within the studied setting diverged from perceived notions of common early childhood practices and the benefits of dynamic shifting pedagogies were validated. Significantly, young students demonstrated use of particular specialised components of school-science language in terms of science language features and vocabulary. As well, their use of language demonstrated the students. knowledge of science concepts, processes and text types. The young students made sense of science phenomena through their incorporation of a variety of science language and text-types in explanations during both teacher-directed and independent situations. The study informs early childhood science practices as well as practices for foundational school science teaching and learning. It has exposed implications for science education policy, curriculum and practices. It supports other findings in relation to the capabilities of young students. The study contributes to Systemic Functional Linguistic theory through the development of a specific resource to determine the technicality of teacher language used in teaching young students. Furthermore, the study contributes to methodology practices relating to Bernsteinian theoretical perspectives and has demonstrated new ways of depicting and reporting teaching practices. It provides an analytical tool which couples Bernsteinian and Hallidayan theoretical perspectives. Ultimately, it defines directions for further research in terms of foundation science language learning, ongoing learning of the language of science and learning science, science teaching and learning practices, specifically in foundational school science, and relationships between home and school science language experiences.
Resumo:
Young people’s participation in science, technology, engineering and mathematics (STEM) is a matter of international concern. Studies and careers that require physical sciences and advanced mathematics are most affected by the problem and women in particular are under-represented in many STEM fields. This article views international research about young people’s relationships to, and participation in, STEM subjects and careers through the lens of an expectancy value model of achievement-related choices. In addition it draws on sociological theories of late-modernity and identity, which situate decision-making in a cultural context. The article examines how these frameworks are useful in explaining the decisions of young people – and young women in particular – about participating in STEM and proposes possible strategies for removing barriers to participation.
Islamic contributions to the International Organization for Science and Technology Education (IOSTE)
Resumo:
This presentation introduces the International Organization for Science and Technology Education (IOSTE), outlining its history, structure, principles and activities. It discusses the role of IOSTE as a values-oriented STE research organization established in response to cold war ideologies with the aim of encouraging dialogue and academic exchange. The presentation then highlights the recent engagement of IOSTE with STE in predominantly Muslim countries. It examines quantitatively and qualitatively the increasing contributions from researchers in these countries, and outlines possible future engagements which could lead to closer research collaborations and relationships between STE academics in Muslim and non-Muslim countries.
Resumo:
Is there a crisis in Australian science and mathematics education? Declining enrolments in upper secondary Science and Mathematics courses have gained much attention from the media, politicians and high-profile scientists over the last few years, yet there is no consensus amongst stakeholders about either the nature or the magnitude of the changes. We have collected raw enrolment data from the education departments of each of the Australian states and territories from 1992 to 2012 and analysed the trends for Biology, Chemistry, Physics, two composite subject groups (Earth Sciences and Multidisciplinary Sciences), as well as entry, intermediate and advanced Mathematics. The results of these analyses are discussed in terms of participation rates, raw enrolments and gender balance. We have found that the total number of students in Year 12 increased by around 16% from 1992 to 2012 while the participation rates for most Science and Mathematics subjects, as a proportion of the total Year 12 cohort, fell (Biology (-10%), Chemistry (-5%), Physics (-7%), Multidisciplinary Science (-5%), intermediate Mathematics (-11%), advanced Mathematics (-7%) in the same period. There were increased participation rates in Earth Sciences (+0.3%) and entry Mathematics (+11%). In each case the greatest rates of change occurred prior to 2001 and have been slower and steadier since. We propose that the broadening of curriculum offerings, further driven by students' self-perception of ability and perceptions of subject difficulty and usefulness, are the most likely cause of the changes in participation. While these continuing declines may not amount to a crisis, there is undoubtedly serious cause for concern.
Resumo:
This study describes a field experiment assessing the effectiveness of education and technological innovation in reducing air pollution generated by domestic wood heaters. Two-hundred and twenty four households from a small regional center in Australia were randomly assigned to one of four experimental conditions: (1) Education only – households received a wood smoke reduction education pack containing information about the negative health impacts of wood smoke pollution, and advice about wood heater operation and firewood management; (2) SmartBurn only – households received a SmartBurn canister designed to improve combustion and help wood fires burn more efficiently, (3) Education and SmartBurn, and (4) neither Education nor SmartBurn (control). Analysis of covariance, controlling for pre-intervention household wood smoke emissions, wood moisture content, and wood heater age, revealed that education and SmartBurn were both associated with significant reduction in wood smoke emissions during the post-intervention period. Follow-up mediation analyses indicated that education reduced emissions by improving wood heater operation practices, but not by increasing health risk perceptions. As predicted, SmartBurn exerted a direct effect on emission levels, unmediated by wood heater operation practices or health risk perceptions.