236 resultados para Pt film impurities
Resumo:
As one of the longest running franchises in cinema history, and with its well-established use of product placements, the James Bond film series provides an ideal framework within which to measure and catalogue the number and types of products used within a particular timeframe. This case study will draw upon extensive content analysis of the James Bond film series in order to chart the evolution of product placement across the franchise's 50 year history.
Resumo:
A little-known facet of Cuban internationalism is the Cuba shares in the education of young people who want to help build a stronger media culture that represents voices from the global South. Cuba was instrumental in the establishment and operation of the International Film and Television School at San Antonio de los Baños. The Cuban government provided the location and buildings for the school, and among the range of international media professionals who teach the students are selected Cuban professors from the Institute of the Arts, based n Havana. The International Film and Television School is supported by funding from Spain and other countries, and by the willingness of international media professionals to teach short courses for little more than an honorarium. Cuba used to provide full scholarships for student from the South to study a two-year course in film or television, but now charges fees for its three-year diploma course.
Resumo:
For almost a decade before Hollywood existed, French firm Pathe towered over the early film industry with estimates of its share of all films sold around the world varying between 50-70%. This paper analyses Pathe’s rise to market leadership by applying a theoretical framework drawn from the business literature on causes of industry dominance, that provides insights into how firms acquire and maintain market dominance. This paper uses evidence presented by film historians to argue that Pathe “fits” the expected theoretical model of the dominant firm because it had a marketing orientation, used an effective quality- based competitive strategy and possessed the six critical strategic marketing capabilities that business research shows enable the best performing firms to consistently outperform rivals.
Resumo:
In this paper, we report the development of novel Pt/nanostructured RuO2/SiC Schottky diode based sensors for hydrogen gas applications. The nanostructured ruthenium oxide thin films were deposited on SiC substrates using radio frequency sputtering technique. Scanning electron microscopy revealed the sputtered RuO2 layer consists of nano-cubular structures with dimensions ranging between 10 and 50 nm. X-ray diffraction confirmed the presence of tetragonal ruthenium (IV) oxide, with preferred orientation along the (101) lattice plane. The current-voltage characteristics of the sensors were investigated towards hydrogen gas in synthetic air at different temperatures from 25 °C to 240 °C. The dynamic responses of the sensors were studied at an optimum temperature of 240 °C and a voltage shift of 304 mV was recorded toward 1% hydrogen gas.
Resumo:
Modern and Postmodern Los Angeles is examined through the lens of film noir and neo noir. The unique relationship between the city of Los Angeles and cinema is discussed in terms of a historiography emphasizing the role played by these defining film styles and genres. The research draws and extends on the work conducted by Edward Dimendberg, Paula Rabinowitz and Mike Davis, and urban theory approaches associated with the Los Angeles School of Urbanism.
Resumo:
A nanostructured Schottky diode was fabricated to sense hydrogen and propene gases in the concentration range of 0.06% to 1%. The ZnO sensitive layer was deposited on SiC substrate by pulse laser deposition technique. Scanning electron microscopy and X-ray diffraction characterisations revealed presence of wurtzite structured ZnO nanograins grown in the direction of (002) and (004). The nanostructured diode was investigated at optimum operating temperature of 260 °C. At a constant reverse current of 1 mA, the voltage shifts towards 1% hydrogen and 1% propene were measured as 173.3 mV and 191.8 mV, respectively.
Resumo:
This paper presents material and gas sensing properties of Pt/SnO2 nanowires/SiC metal oxide semiconductor devices towards hydrogen. The SnO2 nanowires were deposited onto the SiC substrates by vapour-liquid-solid growth mechanism. The material properties of the sensors were investigated using scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The current-voltage characteristics have been analysed. The effective change in the barrier height for 1% hydrogen was found to be 142.91 meV. The dynamic response of the sensors towards hydrogen at different temperatures has also been studied. At 530°C, voltage shift of 310 mV for 1% hydrogen was observed.
Resumo:
An investigation of the electrical and hydrogen sensing properties of a novel Schottky diode based on a nanostructured lanthanum oxide-molybdenum oxide compound is presented herein. Molybdenum oxide (MoO3) nanoplatelets were grown on SiC substrates via thermal evaporation which was then subsequently coated with lanthanum oxide (La2O3) by RF sputtering. The current-voltage characteristics and hydrogen sensing performance (change in barrier height and sensitivity as well as the dynamic response) were examined from 25 to 300°C. At 180°C, a voltage shift of 2.23V was measured from the sensor while exposed to 1% hydrogen gas under a 100 μA constant reverse bias current. The results indicate that the presence of a La2O3 thin layer substantially improves the hydrogen sensitivity of the MoO3 nanoplatelets.
Resumo:
In this work, we present an investigation on Pt/graphene/GaN devices for hydrogen gas sensing applications. The graphene layer was deposited on GaN substrate using a chemical vapour deposition (CVD) technique and was characterised via Raman and X-ray photoelectron spectroscopy. The current-voltage (I-V) and dynamic response of the developed devices were investigated in forward and reverse bias operation at an optimum temperature of 160°C. Voltage shifts of 661.1 and 484.9 mV were recorded towards 1% hydrogen at forward and reverse constant bias current of 1 mA, respectively.
Resumo:
Titanium oxide nanotubes Schottky diodes were fabricated for hydrogen gas sensing applications. The TiO2 nanotubes were synthesized via anodization of RF sputtered titanium films on SiC substrates. Two anodization potentials of 5 V and 20 V were used. Scanning electron microscopy of the synthesized films revealed nanotubes with avarage diameters of 20 nm and 75 nm. X-ray diffraction analysis revealed that the composition of the oxide varied with the anodization potential. TiO2 (anatase) being formed preferentially at 5 V and TiO (no anatase) at 20 V. Current-voltage characteristics of the diodes were studied towards hydrogen at temperatures from 25°C to 250°C. At constant current bias of −500 μA and 250°C, the lateral voltage shifts of 800 mV and 520 mV were recorded towards 1% hydrogen for the 5 V and 20 V anodized nanotubes, respectively.
Resumo:
In this paper, we report the development of a novel Pt/MoO3 nano-flower/SiC Schottky diode based device for hydrogen gas sensing applications. The MoO3 nanostructured thin films were deposited on SiC substrates via thermal evaporation. Morphological characterization of the nanostructured MoO3 by scanning electron microscopy revealed randomly orientated thin nanoplatelets in a densely packed formation of nano-flowers with dimensions ranging from 250 nm to 1 μm. Current-voltage characteristics of the sensor were measured at temperatures from 25°C to 250°C. The sensor showed greater sensitivity in a reverse bias condition than in forward bias. Dynamic response of the sensor was investigated towards different concentrations of hydrogen gas in a synthetic air mixture at 250°C and a large voltage shift of 5.7 V was recorded upon exposure to 1% hydrogen.
Resumo:
A hydrogen gas sensor based on Pt/nanostructured ZnO Schottky diode has been developed. Our proposed theoretical model allows for the explanation of superior dynamic performance of the reverse biased diode when compared to the forward bias operation. The sensor was evaluated with low concentration H2 gas exposures over a temperature range of 280°C to 430°C. Upon exposure to H2 gas, the effective change in free carrier concentration at the Pt/structured ZnO interface is amplified by an enhancement factor, effectively lowering the reverse barrier, producing a large voltage shift. The lowering of the reverse barrier permits a faster response in reverse bias operation, than in forward bias operation.
Resumo:
In this paper, we present gas sensing properties of Pt/graphene-like nano-sheets towards hydrogen gas. The graphene-like nano-sheets were produced via the reduction of spray-coated graphite oxide deposited on SiC substrates by hydrazine vapor. Structural and morphological characterizations of the graphene sheets were analyzed by scanning electron and atomic force microscopy. Current-voltage and dynamic responses of the sensors were investigated towards different concentrations of hydrogen gas in a synthetic air mixture at 100°C. A voltage shift of 100 mV was recorded at 1 mA reverse bias current.
Resumo:
Pt/nanostructured ZnO/SiC Schottky contact devices were fabricated and characterized for hydrogen gas sensing. These devices were investigated in reverse bias due to greater sensitivity, which attributes to the application of nanostructured ZnO. The current-voltage (I-V) characteristics of these devices were measured in different hydrogen concentrations. Effective change in the barrier height for 1% hydrogen was calculated as 27.06 meV at 620°C. The dynamic response of the sensors was also investigated and a voltage shift of 325 mV was recorded at 620°C during exposure to 1% hydrogen in synthetic air.
Resumo:
Pt/anodized TiO2/SiC based metal-oxide-semiconductor (MOS) devices were fabricated and characterized for their sensitivity towards propene (C3H6). Titanium (Ti) thin films were deposited onto the SiC substrates using a filtered cathodic vacuum arc (FCVA) method. Fluoride ions containing neutral electrolyte (0.5 wt% NH4F in ethylene glycol)were used to anodize the Ti films. The anodized films were subsequently annealed at 600 °C for 4 hrs in an oxygen rich environment to obtain TiO2. The current-voltage(I-V) characteristics of the Pt/TiO2/SiC devices were measured in different concentrations of propene. Exposure to the analyte gas caused a change in the Schottky barrier height and hence a lateral shift in the I-V characteristics. The effective change in the barrier height for 1% propene was calculated as 32.8 meV at 620°C. The dynamic response of the sensors was also investigated and a voltage shift of 157 mV was measured at 620°C during exposure to 1% propene.