254 resultados para Gas atmosphere
Resumo:
Titanium oxide nanotubes Schottky diodes were fabricated for hydrogen gas sensing applications. The TiO2 nanotubes were synthesized via anodization of RF sputtered titanium films on SiC substrates. Two anodization potentials of 5 V and 20 V were used. Scanning electron microscopy of the synthesized films revealed nanotubes with avarage diameters of 20 nm and 75 nm. X-ray diffraction analysis revealed that the composition of the oxide varied with the anodization potential. TiO2 (anatase) being formed preferentially at 5 V and TiO (no anatase) at 20 V. Current-voltage characteristics of the diodes were studied towards hydrogen at temperatures from 25°C to 250°C. At constant current bias of −500 μA and 250°C, the lateral voltage shifts of 800 mV and 520 mV were recorded towards 1% hydrogen for the 5 V and 20 V anodized nanotubes, respectively.
Resumo:
In this paper, we report the development of a novel Pt/MoO3 nano-flower/SiC Schottky diode based device for hydrogen gas sensing applications. The MoO3 nanostructured thin films were deposited on SiC substrates via thermal evaporation. Morphological characterization of the nanostructured MoO3 by scanning electron microscopy revealed randomly orientated thin nanoplatelets in a densely packed formation of nano-flowers with dimensions ranging from 250 nm to 1 μm. Current-voltage characteristics of the sensor were measured at temperatures from 25°C to 250°C. The sensor showed greater sensitivity in a reverse bias condition than in forward bias. Dynamic response of the sensor was investigated towards different concentrations of hydrogen gas in a synthetic air mixture at 250°C and a large voltage shift of 5.7 V was recorded upon exposure to 1% hydrogen.
Resumo:
An oriented graphitic nanostructured carbon film has been employed as a conductometric hydrogen gas sensor. The carbon film was energetically deposited using a filtered cathodic vacuum arc with a -75 V bias applied to a stainless steel grid placed 1cm from the surface of the Si substrate. The substrate was heated to 400°C prior to deposition. Electron microscopy showed evidence that the film consisted largely of vertically oriented graphitic sheets and had a density of 2.06 g/cm3. 76% of the atoms were bonded in sp2 or graphitic configurations. A change in the device resistance of >; 1.5% was exhibited upon exposure to 1 % hydrogen gas (in synthetic, zero humidity air) at 100°C. The time for the sensor resistance to increase by 1.5 % under these conditions was approximately 60 s and the baseline (zero hydrogen exposure) resistance remained constant to within 0.01% during and after the hydrogen exposures.
Resumo:
In this paper, we present gas sensing properties of Pt/graphene-like nano-sheets towards hydrogen gas. The graphene-like nano-sheets were produced via the reduction of spray-coated graphite oxide deposited on SiC substrates by hydrazine vapor. Structural and morphological characterizations of the graphene sheets were analyzed by scanning electron and atomic force microscopy. Current-voltage and dynamic responses of the sensors were investigated towards different concentrations of hydrogen gas in a synthetic air mixture at 100°C. A voltage shift of 100 mV was recorded at 1 mA reverse bias current.
Resumo:
Zinc oxide (ZnO) is one of the most promising electronic and photonic materials to date. In this work, we present an enhanced ZnO Schottky gas sensor deposited on SiC substrates in comparison to those reported previously in literature. The performance of ZnO/SiC based Schottky thin film gas sensors produced a forward lateral voltage shift of 12.99mV and 111.87mV in response to concentrations of hydrogen gas at 0.06% and 1% in air at optimum temperature of 330 ºC. The maximum change in barrier height was calculated as 37.9 meV for 1% H2 sensing operation at the optimum temperature.
Resumo:
Presented is the material and gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO3) surface acoustic wave (SAW) transducers. The graphene-like nano-sheets were characterized via scanning electron microscopy (SEM), atomic force microscopy(AFM)and X-ray photoelectron spectroscopy (XPS). The graphenelike nano-sheet/SAW sensors were exposed to different concentrations of hydrogen (H2) gas in a synthetic air at room temperature. The developed sensors exhibit good sensitivity towards low concentrations of H2 in ambient conditions, as well as excellent dynamic performance towards H2 at room temperature.
Resumo:
Thin films consisting of graphene-like nano-sheets were deposited onto LiTaO3 surface acoustic wave transducers. A thickness of less than 10 nm and the existence of C-C bond were observed during the characterization of graphene-like nano-sheets. Frequency shift of 18.7 kHz and 14.9 kHz towards 8.5 ppm NO2 at two different operating temperature, 40°C and 25°C, respectively, was observed.
Resumo:
Pt/SnO2 nanowires/SiC based metal-oxidesemiconductor (MOS) devices were fabricated and tested for their gas sensitivity towards hydrogen. Tin oxide (SnO2) nanowires were grown on SiC substrates by the vapour liquid solid growth process. The material properties of the SnO2 nanowires such as its formation and dimensions were analyzed using scanning electron microscopy (SEM). The currentvoltage (I-V) characteristics at different hydrogen concentrations are presented. The effective change in the barrier height for 0.06 and 1% hydrogen were found to be 20.78 and 131.59 meV, respectively. A voltage shift of 310 mV at 530°C for 1% hydrogen was measured.
Resumo:
Selective separation of nitrogen (N2) from methane (CH4) is highly significant in natural gas purification, and it is very challenging to achieve this because of their nearly identical size (the molecular diameters of N2 and CH4 are 3.64 Å and 3.80 Å, respectively). Here we theoretically study the adsorption of N2 and CH4 on B12 cluster and solid boron surfaces a-B12 and c-B28. Our results show that these electron-deficiency boron materials have higher selectivity in adsorbing and capturing N2 than CH4, which provides very useful information for experimentally exploiting boron materials for natural gas purification.
Resumo:
Molecular modelling has become a useful and widely applied tool to investigate separation and diffusion behavior of gas molecules through nano-porous low dimensional carbon materials, including quasi-1D carbon nanotubes and 2D graphene-like carbon allotropes. These simulations provide detailed, molecular level information about the carbon framework structure as well as dynamics and mechanistic insights, i.e. size sieving, quantum sieving, and chemical affinity sieving. In this perspective, we revisit recent advances in this field and summarize separation mechanisms for multicomponent systems from kinetic and equilibrium molecular simulations, elucidating also anomalous diffusion effects induced by the confining pore structure and outlining perspectives for future directions in this field.
Resumo:
We developed Pt/tantalum oxide (Ta2O5) Schottky diodes for hydrogen sensing applications. Thin layer (4 nm) of Ta2O5 was deposited on silicon (Si) and silicon carbide (SiC) substrates using the radio frequency sputtering technique. We compared the performance of these sensors at different temperatures of 100 °C and 150 °C. At these operating temperatures, the sensor based on SiC exhibited a larger sensitivity, whilst the sensor based on Si exhibited a faster response toward hydrogen gas. We discussed herein, the experimental results obtained for these Pt/Ta2O5 based Schottky diodes exhibited that they are promising candidates for hydrogen sensing applications.
Resumo:
Bunker fuels used in the aviation and maritime sectors are responsible for nearly 10% of global greenhouse gas emissions.1 According to a scientific survey: ‘[s]hipping is estimated to have emitted 1,046 million tonnes of CO2 in 2007, which corresponds to 3.3% of the global emissions during 2007. International shipping is estimated to have emitted 870 million tonnes, or about 2.7% of the global emissions of CO2 in 2007’. The study also predicted that ‘by 2050, in the absence of policies, ship emissions may grow by 150% to 250% (compared to the emissions in 2007) as a result of the growth in shipping.’
Resumo:
Creative Statement: “There are those who see Planet Earth as a gigantic living being, one that feeds and nurtures humanity and myriad other species – an entity that must be cared for. Then there are those who see it as a rock full of riches to be pilfered heedlessly in a short-term quest for over-abundance. This ‘cradle to grave’ mentality, it would seem, is taking its toll (unless you’re a virulent disbeliever in climate change). Why not, ask artists Priscilla Bracks and Gavin Sade, take a different approach? To this end they have set out on a near impossible task; to visualise the staggering quantity of carbon produced by Australia every year. Their eerie, glowing plastic cube resembles something straight out of Dr Who or The X Files. And, like the best science fiction, it has technical realities at its heart. Every One, Every Day tangibly illustrates our greenhouse gas output – its 27m3 volume is approximately the amount of green-house gas emitted per capita, daily. Every One, Every Dayis lit by an array of LED’s displaying light patterns representing energy use generated by data from the Australian Energy Market. Every One, Every Day was formed from recycled, polyethylene – used milk bottles – ‘lent’ to the artists by a Visy recycling facility. At the end of the Vivid Festival this plastic will be returned to Visy, where it will re-enter the stream of ‘technical nutrients.’ Could we make another world? One that emulates the continuing cycles of nature? One that uses our ‘technical nutrients’ such as plastic and steel in continual cycles, just like a deciduous tree dropping leaves to compost itself and keep it’s roots warm and moist?” (Ashleigh Crawford. Melbourne – April, 2013) Artistic Research Statement: The research focus of this work is on exploring how to represent complex statistics and data at a human scale, and how produce a work where a large percentage of the materials could be recycled. The surface of Every One, Every Day is clad in tiles made from polyethylene, from primarily recycled milk bottles, ‘lent’ to the artists by the Visy recycling facility in Sydney. The tiles will be returned to Visy for recycling. As such the work can be viewed as an intervention in the industrial ecology of polyethylene, and in the process demonstrates how to sustain cycles of technical materials – by taking the output of a recycling facility back to a manufacturer to produce usable materials. In terms of data visualisation, Every One, Every Day takes the form of a cube with a volume of 27 cubic meters. The annual per capita emissions figures for Australia are cited as ranging between 18 to 25 tons. Assuming the lower figure, 18tons per capital annually, the 27 cubic meters represents approximately one day per capita of CO2 emissions – where CO2 is a gas at 15C and 1 atmosphere of pressure. The work also explores real time data visualisation by using an array of 600 controllable LEDs inside the cube. Illumination patterns are derived from a real time data from the Australian Energy Market, using the dispatch interval price and demand graph for New South Wales. The two variables of demand and price are mapped to properties of the illumination - hue, brightness, movement, frequency etc. The research underpinning the project spanned industrial ecology to data visualization and public art practices. The result is that Every One, Every Day is one of the first public artworks that successfully bring together materials, physical form, and real time data representation in a unified whole.
Resumo:
Practitioners from both the upstream oil and gas industry and the space and satellite sector have repeatedly noted several striking similarities between the two industries over the years, which have in turn resulted in many direct comparisons in the media and industry press. The two sectors have previously worked together and shared ideas in ways that have yielded some important breakthroughs, but relatively little sharing or cross-pollination has occurred in the area of asset maintenance. This is somewhat surprising in light of the fact that here, too, the sectors have much in common. This paper accordingly puts forward the viewpoint that the upstream oil and gas industry could potentially make significant improvements in asset maintenance—specifically, with regard to offshore platforms and remote pipelines—by selectively applying some aspects of the maintenance strategies and philosophies that have been learned in the space and satellite sector. The paper then offers a research agenda toward accelerating the rate of learning and sharing between the two industries in this domain, and concludes with policy recommendations that could facilitate this kind of cross-industry learning.
Resumo:
Concern about the increasing atmospheric CO2 concentration and its impact on the environment has led to increasing attention directed toward finding advanced materials and technologies suited for efficient CO2 capture, storage and purification of clean-burning natural gas. In this letter, we have performed comprehensive theoretical investigation of CO2, N2, CH4 and H2 adsorption on B2CNTs. Our study shows that CO2 molecules can form strong interactions with B2CNTs with different charge states. However, N2, CH4 and H2 can only form very weak interactions with B2CNTs. Therefore, the study demonstrates B2CNTs could sever as promising materials for CO2 capture and gas separation.