396 resultados para alberi, decisione, apprendimento, ensemble, learning, machine
Resumo:
Data-driven approaches such as Gaussian Process (GP) regression have been used extensively in recent robotics literature to achieve estimation by learning from experience. To ensure satisfactory performance, in most cases, multiple learning inputs are required. Intuitively, adding new inputs can often contribute to better estimation accuracy, however, it may come at the cost of a new sensor, larger training dataset and/or more complex learning, some- times for limited benefits. Therefore, it is crucial to have a systematic procedure to determine the actual impact each input has on the estimation performance. To address this issue, in this paper we propose to analyse the impact of each input on the estimate using a variance-based sensitivity analysis method. We propose an approach built on Analysis of Variance (ANOVA) decomposition, which can characterise how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We apply the proposed approach to a terrain-traversability estimation method we proposed in prior work, which is based on multi-task GP regression, and we validate this implementation experimentally using a rover on a Mars-analogue terrain.
Resumo:
An ongoing challenge for Learning Analytics research has been the scalable derivation of user interaction data from multiple technologies. The complexities associated with this challenge are increasing as educators embrace an ever growing number of social and content related technologies. The Experience API (xAPI) alongside the development of user specific record stores has been touted as a means to address this challenge, but a number of subtle considerations must be made when using xAPI in Learning Analytics. This paper provides a general overview to the complexities and challenges of using xAPI in a general systemic analytics solution - called the Connected Learning Analytics (CLA) toolkit. The importance of design is emphasised, as is the notion of common vocabularies and xAPI Recipes. Early decisions about vocabularies and structural relationships between statements can serve to either facilitate or handicap later analytics solutions. The CLA toolkit case study provides us with a way of examining both the strengths and the weaknesses of the current xAPI specification, and we conclude with a proposal for how xAPI might be improved by using JSON-LD to formalise Recipes in a machine readable form.
Resumo:
Identifying unusual or anomalous patterns in an underlying dataset is an important but challenging task in many applications. The focus of the unsupervised anomaly detection literature has mostly been on vectorised data. However, many applications are more naturally described using higher-order tensor representations. Approaches that vectorise tensorial data can destroy the structural information encoded in the high-dimensional space, and lead to the problem of the curse of dimensionality. In this paper we present the first unsupervised tensorial anomaly detection method, along with a randomised version of our method. Our anomaly detection method, the One-class Support Tensor Machine (1STM), is a generalisation of conventional one-class Support Vector Machines to higher-order spaces. 1STM preserves the multiway structure of tensor data, while achieving significant improvement in accuracy and efficiency over conventional vectorised methods. We then leverage the theory of nonlinear random projections to propose the Randomised 1STM (R1STM). Our empirical analysis on several real and synthetic datasets shows that our R1STM algorithm delivers comparable or better accuracy to a state-of-the-art deep learning method and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.