126 resultados para Sparse sensing
Resumo:
Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.
Resumo:
Cognitive radio is an emerging technology proposing the concept of dynamic spec- trum access as a solution to the looming problem of spectrum scarcity caused by the growth in wireless communication systems. Under the proposed concept, non- licensed, secondary users (SU) can access spectrum owned by licensed, primary users (PU) so long as interference to PU are kept minimal. Spectrum sensing is a crucial task in cognitive radio whereby the SU senses the spectrum to detect the presence or absence of any PU signal. Conventional spectrum sensing assumes the PU signal as ‘stationary’ and remains in the same activity state during the sensing cycle, while an emerging trend models PU as ‘non-stationary’ and undergoes state changes. Existing studies have focused on non-stationary PU during the transmission period, however very little research considered the impact on spectrum sensing when the PU is non-stationary during the sensing period. The concept of PU duty cycle is developed as a tool to analyse the performance of spectrum sensing detectors when detecting non-stationary PU signals. New detectors are also proposed to optimise detection with respect to duty cycle ex- hibited by the PU. This research consists of two major investigations. The first stage investigates the impact of duty cycle on the performance of existing detec- tors and the extent of the problem in existing studies. The second stage develops new detection models and frameworks to ensure the integrity of spectrum sensing when detecting non-stationary PU signals. The first investigation demonstrates that conventional signal model formulated for stationary PU does not accurately reflect the behaviour of a non-stationary PU. Therefore the performance calculated and assumed to be achievable by the conventional detector does not reflect actual performance achieved. Through analysing the statistical properties of duty cycle, performance degradation is proved to be a problem that cannot be easily neglected in existing sensing studies when PU is modelled as non-stationary. The second investigation presents detectors that are aware of the duty cycle ex- hibited by a non-stationary PU. A two stage detection model is proposed to improve the detection performance and robustness to changes in duty cycle. This detector is most suitable for applications that require long sensing periods. A second detector, the duty cycle based energy detector is formulated by integrat- ing the distribution of duty cycle into the test statistic of the energy detector and suitable for short sensing periods. The decision threshold is optimised with respect to the traffic model of the PU, hence the proposed detector can calculate average detection performance that reflect realistic results. A detection framework for the application of spectrum sensing optimisation is proposed to provide clear guidance on the constraints on sensing and detection model. Following this framework will ensure the signal model accurately reflects practical behaviour while the detection model implemented is also suitable for the desired detection assumption. Based on this framework, a spectrum sensing optimisation algorithm is further developed to maximise the sensing efficiency for non-stationary PU. New optimisation constraints are derived to account for any PU state changes within the sensing cycle while implementing the proposed duty cycle based detector.
The backfilled GEI : a cross-capture modality gait feature for frontal and side-view gait recognition
Resumo:
In this paper, we propose a novel direction for gait recognition research by proposing a new capture-modality independent, appearance-based feature which we call the Back-filled Gait Energy Image (BGEI). It can can be constructed from both frontal depth images, as well as the more commonly used side-view silhouettes, allowing the feature to be applied across these two differing capturing systems using the same enrolled database. To evaluate this new feature, a frontally captured depth-based gait dataset was created containing 37 unique subjects, a subset of which also contained sequences captured from the side. The results demonstrate that the BGEI can effectively be used to identify subjects through their gait across these two differing input devices, achieving rank-1 match rate of 100%, in our experiments. We also compare the BGEI against the GEI and GEV in their respective domains, using the CASIA dataset and our depth dataset, showing that it compares favourably against them. The experiments conducted were performed using a sparse representation based classifier with a locally discriminating input feature space, which show significant improvement in performance over other classifiers used in gait recognition literature, achieving state of the art results with the GEI on the CASIA dataset.
Resumo:
Zinc oxide (ZnO) nanopyramids were synthesized by a one-pot route in a non-aqueous and surfactantfree environment. The synthesized metal oxide was characterized using SEM, XRD, and TEM to investigate the surface morphology and crystallographic phase of the nanostructures. It was observed that the ZnO nanopyramids were of uniform size and symmetrical, with a hexagonal base and height of ∼100 nm. Gas sensing characterization of the ZnO nanopyramids when deposited as thin-film onto conductometric transducers were performed towards NOx and C2H5OH vapor of different concentrations over a temperature range of 22–350 ◦C. It was observed that the sensors responded towards NO2 (10 ppm) and C2H5OH(250 ppm) analytes best at temperatures of 200 and 260 ◦C with a sensor response of 14.5 and 5.72, respectively. The sensors showed satisfactory sensitivity, repeatability as well as fast response and recovery towards both the oxidizing and the reducing analyte. The good performance was attributed to the low amount of organic impurities, large surface-to-volume ratio and high crystallinity of the solvothermally synthesized ZnO nanopyramids.
Resumo:
Intelligent Transport Systems (ITS) resembles the infrastructure for ubiquitous computing in the car. It encompasses a) all kinds of sensing technologies within vehicles as well as road infrastructure, b) wireless communication protocols for the sensed information to be exchanged between vehicles (V2V) and between vehicles and infrastructure (V2I), and c) appropriate intelligent algorithms and computational technologies that process these real-time streams of information. As such, ITS can be considered a game changer. It provides the fundamental basis of new, innovative concepts and applications, similar to the Internet itself. The information sensed or gathered within or around the vehicle has led to a variety of context-aware in-vehicular technologies within the car. A simple example is the Anti-lock Breaking System (ABS), which releases the breaks when sensors detect that the wheels are locked. We refer to this type of context awareness as vehicle/technology awareness. V2V and V2I communication, often summarized as V2X, enables the exchange and sharing of sensed information amongst cars. As a result, the vehicle/technology awareness horizon of each individual car is expanded beyond its observable surrounding, paving the way to technologically enhance such already advanced systems. In this chapter, we draw attention to those application areas of sensing and V2X technologies, where the human (driver), the human’s behavior and hence the psychological perspective plays a more pivotal role. The focal points of our project are illustrated in Figure 1: In all areas, the vehicle first (1) gathers or senses information about the driver. Rather than to limit the use of such information towards vehicle/technology awareness, we see great potential for applications in which this sensed information is then (2) fed back to the driver for an increased self-awareness. In addition, by using V2V technologies, it can also be (3) passed to surrounding drivers for an increased social awareness, or (4), pushed even further, into the cloud, where it is collected and visualized for an increased, collective urban awareness within the urban community at large, which includes all city dwellers.
Resumo:
This paper details the progress to date, toward developing a small autonomous helicopter. We describe system architecture, avionics, visual state estimation, custom IMU design, aircraft modelling, as well as various linear and neuro/fuzzy control algorithms. Experimental results are presented for state estimation using fused stereo vision and IMU data, heading control, and attitude control. FAM attitude and velocity controllers have been shown to be effective in simulation.
Resumo:
In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates.
Resumo:
Abstract. In recent years, sparse representation based classification(SRC) has received much attention in face recognition with multipletraining samples of each subject. However, it cannot be easily applied toa recognition task with insufficient training samples under uncontrolledenvironments. On the other hand, cohort normalization, as a way of mea-suring the degradation effect under challenging environments in relationto a pool of cohort samples, has been widely used in the area of biometricauthentication. In this paper, for the first time, we introduce cohort nor-malization to SRC-based face recognition with insufficient training sam-ples. Specifically, a user-specific cohort set is selected to normalize theraw residual, which is obtained from comparing the test sample with itssparse representations corresponding to the gallery subject, using poly-nomial regression. Experimental results on AR and FERET databases show that cohort normalization can bring SRC much robustness against various forms of degradation factors for undersampled face recognition.
Resumo:
In this paper, we present how a thin RF sputtered layer of lanthanum oxide (La2O3) can alter electrical and improve hydrogen gas sensing characteristics of Pt/molybdenum oxide (MoO3) nanostructures Schottky diodes. We derived the barrier height, ideality factor and dielectric constant from the measured I–V characteristics at operating temperatures in the range of 25–300 ◦C. The dynamic response, response and recovery times were obtained upon exposure to hydrogen gas at different concentrations. Analysis of the results indicated a substantial improvement to the voltage shift sensitivity of the sensors incorporating the La2O3 layer. We associate this enhancement to the formation of numerous trap states due to the presence of the La2O3 thin film on the MoO3 nanoplatelets. These trap states increase the intensity of the dipolar charges at the metal–semiconductor interface, which induce greater bending of the energy bands. However, results also indicate that the presence of La2O3 trap states also increases response and recover times as electrons trapping and de-trapping processes occur before they can pass through this thin dielectric layer.
Resumo:
This paper is concerned with the optimal path planning and initialization interval of one or two UAVs in presence of a constant wind. The method compares previous literature results on synchronization of UAVs along convex curves, path planning and sampling in 2D and extends it to 3D. This method can be applied to observe gas/particle emissions inside a control volume during sampling loops. The flight pattern is composed of two phases: a start-up interval and a sampling interval which is represented by a semi-circular path. The methods were tested in four complex model test cases in 2D and 3D as well as one simulated real world scenario in 2D and one in 3D.
Resumo:
This paper presents material and gas sensing properties of Pt/SnO2 nanowires/SiC metal oxide semiconductor devices towards hydrogen. The SnO2 nanowires were deposited onto the SiC substrates by vapour-liquid-solid growth mechanism. The material properties of the sensors were investigated using scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The current-voltage characteristics have been analysed. The effective change in the barrier height for 1% hydrogen was found to be 142.91 meV. The dynamic response of the sensors towards hydrogen at different temperatures has also been studied. At 530°C, voltage shift of 310 mV for 1% hydrogen was observed.
Resumo:
In this work, we investigate how hydrogen sensing performance of thermally evaporated MoO3 nanoplatelets can be further improved by RF sputtering a thin layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We show that dissociated hydrogen atoms cause the thin film layer to be polarised, inducing a measurable potential difference greater than that as reported previously. We attribute these observations to the presence of numerous traps in the thin layer; their states allow a stronger trapping of charge at the Pt-thin film oxide interface as compared to the MoO3 sensors without the coating. Under exposure to H2 (10 000 ppm) the maximum change in dielectric constant of 45.6 (at 260 °C) for the Ta2O5/MoO3 nanoplatelets and 31.6 (at 220 °C) for La2O3/MoO3 nanoplatelets. Subsequently, the maximum sensitivity for the Ta2O5/MoO3 is 16.87 (at 260 °C) and La2O3/MoO3 is 7.52 (at 300 °C).
Resumo:
An investigation of the electrical and hydrogen sensing properties of a novel Schottky diode based on a nanostructured lanthanum oxide-molybdenum oxide compound is presented herein. Molybdenum oxide (MoO3) nanoplatelets were grown on SiC substrates via thermal evaporation which was then subsequently coated with lanthanum oxide (La2O3) by RF sputtering. The current-voltage characteristics and hydrogen sensing performance (change in barrier height and sensitivity as well as the dynamic response) were examined from 25 to 300°C. At 180°C, a voltage shift of 2.23V was measured from the sensor while exposed to 1% hydrogen gas under a 100 μA constant reverse bias current. The results indicate that the presence of a La2O3 thin layer substantially improves the hydrogen sensitivity of the MoO3 nanoplatelets.
Resumo:
In this work, we present an investigation on Pt/graphene/GaN devices for hydrogen gas sensing applications. The graphene layer was deposited on GaN substrate using a chemical vapour deposition (CVD) technique and was characterised via Raman and X-ray photoelectron spectroscopy. The current-voltage (I-V) and dynamic response of the developed devices were investigated in forward and reverse bias operation at an optimum temperature of 160°C. Voltage shifts of 661.1 and 484.9 mV were recorded towards 1% hydrogen at forward and reverse constant bias current of 1 mA, respectively.
Resumo:
Titanium oxide nanotubes Schottky diodes were fabricated for hydrogen gas sensing applications. The TiO2 nanotubes were synthesized via anodization of RF sputtered titanium films on SiC substrates. Two anodization potentials of 5 V and 20 V were used. Scanning electron microscopy of the synthesized films revealed nanotubes with avarage diameters of 20 nm and 75 nm. X-ray diffraction analysis revealed that the composition of the oxide varied with the anodization potential. TiO2 (anatase) being formed preferentially at 5 V and TiO (no anatase) at 20 V. Current-voltage characteristics of the diodes were studied towards hydrogen at temperatures from 25°C to 250°C. At constant current bias of −500 μA and 250°C, the lateral voltage shifts of 800 mV and 520 mV were recorded towards 1% hydrogen for the 5 V and 20 V anodized nanotubes, respectively.