578 resultados para Jonathan Livernois
Resumo:
Draglines are used extensively for overburden stripping in Australian open cut coal mines. This paper outlines the design of a computer control system to implement an automated swing cycle on a production dragline. Subsystems and sensors have been developed to satisfy the constraints imposed by the task, the harsh operating environment and the mine's production requirements.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is both arduous and dangerous. However, while the industry makes extensive use of mechanisation it has shown a slow uptake of automation. A major cause of this is the complexity of the task, and the limitations of existing automation technology which is predicated on a structured and time invariant working environment. Here we discuss the topic of mining automation from a robotics and computer vision perspective — as a problem in sensor based robot control, an issue which the robotics community has been studying for nearly two decades. We then describe two of our current mining automation projects to demonstrate what is possible for both open-pit and underground mining operations.
Resumo:
This paper describes current research at the Australian Centre for Field Robotics (ACFR) in collaboration with the Commonwealth Scientific and Industrial Research Organisation (CSIRO) within the Cooperative Research Centre (CRC) for Mining Technology and Equipment (CMTE) towards achieving autonomous navigation of underground vehicles, like a Load-Haul-Dump (LHD) truck. This work is being sponsored by the mining industry through the Australian Mineral Industries Research Association Limited (AMIRA). Robust and reliable autonomous navigation can only be realised by achieving high level tasks such as path-planning and obstacle avoidance. This requires determining the pose (position and orientation) of the vehicle at all times. A minimal infrastructure localisation algorithm that has been developed for this purpose is outlined and the corresponding results are presented. Further research issues that are under investigation are also outlined briefly.
Resumo:
The research reported here addresses the problem of detecting and tracking independently moving objects from a moving observer in real-time, using corners as object tokens. Corners are detected using the Harris corner detector, and local image-plane constraints are employed to solve the correspondence problem. The approach relaxes the restrictive static-world assumption conventionally made, and is therefore capable of tracking independently moving and deformable objects. Tracking is performed without the use of any 3-dimensional motion model. The technique is novel in that, unlike traditional feature-tracking algorithms where feature detection and tracking is carried out over the entire image-plane, here it is restricted to those areas most likely to contain-meaningful image structure. Two distinct types of instantiation regions are identified, these being the “focus-of-expansion” region and “border” regions of the image-plane. The size and location of these regions are defined from a combination of odometry information and a limited knowledge of the operating scenario. The algorithms developed have been tested on real image sequences taken from typical driving scenarios. Implementation of the algorithm using T800 Transputers has shown that near-linear speedups are achievable, and that real-time operation is possible (half-video rate has been achieved using 30 processing elements).
Resumo:
The design and fabrication of a proto-type four-rotor vertical take-off and landing (VTOL) aerial robot for use as indoor experimental robotics platform is presented. The flyer is termed an X4-flyer. A development of the dynamic model of the system is presented and a pilot augmentation control design is proposed.
Resumo:
This paper details the development of an online adaptive control system, designed to learn from the actions of an instructing pilot. Three learning architectures, single layer neural networks (SLNN), multi-layer neural networks (MLNN), and fuzzy associative memories (FAM) are considerd. Each method has been tested in simulation. While the SLNN and MLNN provided adequate control under some simulation conditions, the addition of pilot noise and pilot variation during simulation training caused these methods to fail.
Resumo:
Details the developments to date of an unmanned air vehicle (UAV) based on a standard size 60 model helicopter. The design goal is to have the helicopter achieve stable hover with the aid of an INS and stereo vision. The focus of the paper is on the development of an artificial neural network (ANN) that makes use of only the INS data to generate hover commands, which are used to directly manipulate the flight servos. Current results show that networks incorporating some form of recurrency (state history) offer little advantage over those without. At this stage, the ANN has partially maintained periods of hover even with misaligned sensors.
Resumo:
This paper discusses a number of key issues for the development of robust obstacle detection systems for autonomous mining vehicles. Strategies for obstacle detection are described and an overview of the state-of-the-art in obstacle detection for outdoor autonomous vehicles using lasers is presented, with their applicability to the mining environment noted. The development of an obstacle detection system for a mining vehicle is then detailed. This system uses a 2D laser scanner as the prime sensor and combines dead-reckoning data with laser data to create local terrain maps. The slope of the terrain maps is then used to detect potential obstacles.
Resumo:
The detailed system design of a small experimental autonomous helicopter is described. The system requires no ground-to-helicopter communications and hence all automation hardware is on-board the helicopter. All elements of the system are described including the control computer, the flight computer (the helicopter-to-control-computer interface), the sensors and the software. A number of critical implementation issues are also discussed.
Resumo:
Height is a critical variable for helicopter hover control. In this paper we discuss, and present experimental results for, two different height sensing techniques: ultrasonic and stereo imaging, which have complementary characteristics. Feature-based stereo is used which provides a basis for visual odometry and attitude estimation in the future.
Resumo:
This paper describes a software architecture for real-world robotic applications. We discuss issues of software reliability, testing and realistic off-line simulation that allows the majority of the automation system to be tested off-line in the laboratory before deployment in the field. A recent project, the automation of a very large mining machine is used to illustrate the discussion.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is arduous, dangerous and often repetitive. This paper discusses a robust sensing system developed to find and trade the position of the hoist ropes of a dragline. Draglines are large `walking cranes' used in open-pit coal mining to remove the material covering the coal seam. The rope sensing system developed uses two time-of-flight laser scanners. The finding algorithm uses a novel data association and tracking strategy based on pairing rope data.
Resumo:
This paper discusses a Dumber of key issues for the development of robust, obstacle detection systems for autonomous mining and construction vehicles. A taxonomy of obstacle detection systems is described; An overview of the state-of- the-art in obstacle detection for outdoor autonomous vehicles is presented with their applicability to the mining and construction environments noted. The issue of so-called fail-safe obstacle detection is then discussed. Finally, we describe the development of an obstacle detection system for a mining vehicle.
Resumo:
This paper discusses the issue of sensing and control for stabilizing a swinging load. Our work has focused in particular on the dragline as used for overburden stripping in open-pit coal mining, but many of the principles would also be applicable to construction cranes. Results obtained from experimental work on a full-scale production dragline are presented.