336 resultados para Mining operations
Resumo:
This paper presents an automated image‐based safety assessment method for earthmoving and surface mining activities. The literature review revealed the possible causes of accidents on earthmoving operations, investigated the spatial risk factors of these types of accident, and identified spatial data needs for automated safety assessment based on current safety regulations. Image‐based data collection devices and algorithms for safety assessment were then evaluated. Analysis methods and rules for monitoring safety violations were also discussed. The experimental results showed that the safety assessment method collected spatial data using stereo vision cameras, applied object identification and tracking algorithms, and finally utilized identified and tracked object information for safety decision making.
Resumo:
Regardless of technology benefits, safety planners still face difficulties explaining errors related to the use of different technologies and evaluating how the errors impact the performance of safety decision making. This paper presents a preliminary error impact analysis testbed to model object identification and tracking errors caused by image-based devices and algorithms and to analyze the impact of the errors for spatial safety assessment of earthmoving and surface mining activities. More specifically, this research designed a testbed to model workspaces for earthmoving operations, to simulate safety-related violations, and to apply different object identification and tracking errors on the data collected and processed for spatial safety assessment. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of the errors were investigated for the safety planning purpose.
Resumo:
Open pit mine operations are complex businesses that demand a constant assessment of risk. This is because the value of a mine project is typically influenced by many underlying economic and physical uncertainties, such as metal prices, metal grades, costs, schedules, quantities, and environmental issues, among others, which are not known with much certainty at the beginning of the project. Hence, mining projects present a considerable challenge to those involved in associated investment decisions, such as the owners of the mine and other stakeholders. In general terms, when an option exists to acquire a new or operating mining project, , the owners and stock holders of the mine project need to know the value of the mining project, which is the fundamental criterion for making final decisions about going ahead with the venture capital. However, obtaining the mine project’s value is not an easy task. The reason for this is that sophisticated valuation and mine optimisation techniques, which combine advanced theories in geostatistics, statistics, engineering, economics and finance, among others, need to be used by the mine analyst or mine planner in order to assess and quantify the existing uncertainty and, consequently, the risk involved in the project investment. Furthermore, current valuation and mine optimisation techniques do not complement each other. That is valuation techniques based on real options (RO) analysis assume an expected (constant) metal grade and ore tonnage during a specified period, while mine optimisation (MO) techniques assume expected (constant) metal prices and mining costs. These assumptions are not totally correct since both sources of uncertainty—that of the orebody (metal grade and reserves of mineral), and that about the future behaviour of metal prices and mining costs—are the ones that have great impact on the value of any mining project. Consequently, the key objective of this thesis is twofold. The first objective consists of analysing and understanding the main sources of uncertainty in an open pit mining project, such as the orebody (in situ metal grade), mining costs and metal price uncertainties, and their effect on the final project value. The second objective consists of breaking down the wall of isolation between economic valuation and mine optimisation techniques in order to generate a novel open pit mine evaluation framework called the ―Integrated Valuation / Optimisation Framework (IVOF)‖. One important characteristic of this new framework is that it incorporates the RO and MO valuation techniques into a single integrated process that quantifies and describes uncertainty and risk in a mine project evaluation process, giving a more realistic estimate of the project’s value. To achieve this, novel and advanced engineering and econometric methods are used to integrate financial and geological uncertainty into dynamic risk forecasting measures. The proposed mine valuation/optimisation technique is then applied to a real gold disseminated open pit mine deposit to estimate its value in the face of orebody, mining costs and metal price uncertainties.
Resumo:
Each year, organizations in Australian mining industry (asset intensive industry) spend substantial amount of capital (A$86 billion in 2009-10) (Statistics, 2011) in acquiring engineering assets. Engineering assets are put to use in operations to generate value. Different functions (departments) of an organization have different expectations and requirements from each of the engineering asset e.g. return on investment, reliability, efficiency, maintainability, low cost of running the asset, low or nil environmental impact and easy of disposal, potential salvage value etc. Assets are acquired from suppliers or built by service providers and or internally. The process of acquiring assets is supported by procurement function. One of the most costly mistakes that organizations can make is acquiring the inappropriate or non-conforming assets that do not fit the purpose. The root cause of acquiring non confirming assets belongs to incorrect acquisition decision and the process of making decisions. It is very important that an asset acquisition decision is based on inputs and multi-criteria of each function within the organization which has direct or indirect impact on the acquisition, utilization, maintenance and disposal of the asset. Literature review shows that currently there is no comprehensive process framework and tool available to evaluate the inclusiveness and breadth of asset acquisition decisions that are taken in the Mining Organizations. This thesis discusses various such criteria and inputs that need to be considered and evaluated from various functions within the organization while making the asset acquisition decision. Criteria from functions such as finance, production, maintenance, logistics, procurement, asset management, environment health and safety, material management, training and development etc. need to be considered to make an effective and coherent asset acquisition decision. The thesis also discusses a tool that is developed to be used in the multi-criteria and cross functional acquisition decision making. The development of multi-criteria and cross functional inputs based decision framework and tool which utilizes that framework to formulate cross functional and integrated asset acquisition decisions are the contribution of this research.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. The objective is to produce a stereo vision sensor suited to close-range scenes consisting primarily of rocks. This sensor should be able to produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this investigation. A number of area based matching metrics have been implemented, including the SAD, SSD, NCC, and their zero-meaned versions. The NCC and the zero meaned SAD and SSD were found to produce the disparity maps with the highest proportion of valid matches. The plain SAD and SSD were the least computationally expensive, due to all their operations taking place in integer arithmetic, however, they were extremely sensitive to radiometric distortion. Non-parametric techniques for matching, in particular, the rank and the census transform, have also been investigated. The rank and census transforms were found to be robust with respect to radiometric distortion, as well as being able to produce disparity maps with a high proportion of valid matches. An additional advantage of both the rank and the census transform is their amenability to fast hardware implementation.
Resumo:
The mining equipment technology services sector is driven by a reactive and user-centered design approach, with a technological focus on incremental new product development. As Australia moves out of its sustained mining boom, companies need to rethink their strategic position, to become agile to stay relevant in an enigmatic market. This paper reports on the first five months on an embedded case study within an Australian, family-owned mining manufacturer. The first author is currently engaged in a longitudinal design led innovation project, as a catalyst to guide the company’s journey to design integration. The results find that design led innovation could act as a channel for highlighting and exploring company disconnections with the marketplace and offer a customer-centric catalyst for internal change. Data collected for this study is from 12 analysed semistructured interviews, a focus group and a reflective journal, over a five-month period. This paper explores limitations to design integration, and highlights opportunities to explore and leverage entrepreneurial characteristics to stay agile, broaden innovation and future-proof through the next commodity cycle in the mining industry.
Resumo:
Australia’s mining boom Global demand for minerals and energy products has fuelled Australia’s recent resources boom and has led to the rapid expansion of mining projects not only in remote locations but increasingly in settled traditionally agricultural rural areas. A fundamental shift has also occurred in the provisioning of skilled and semi-skilled workers. The huge acceleration in industry demand for labour has been accompanied by the entrenchment of workforce arrangements largely dependent on fly-in, fly-out (FIFO) and drive–in, drive–out (DIDO) non-resident workers (NRWs). While NRWs are working away from their homes, they are usually accommodated in work camps or ‘villages’ for the duration of their work cycle which are normally comprised of many consecutive days of 12-hour day- and night-shifts. The health effects of this form of employment and the accompanying lifestyle is increasingly becoming contentious. Impacts on personal wellness, wellbeing and quality of life essentially remain under-researched and thus misunderstood. Sodexo in Australia Sodexo began operations in Australia in 1982, and has since become a leader in providing Quality of Life (QOL) services to businesses across the country. The 6,000 Australian employees are part of a global Sodexo team of 413,000 people. Sodexo in Australia designs, delivers and manages on-site their QOL services at 320 diverse site locations, including remote sites. Sodexo operates in a range of sectors, including the mining industry. Service plans are tailored to suit the individual needs of organisations. Sodexo Remote Sites has previously conducted unpublished research among mining workers in Australia. The results highlighted needs and expectations of Australian mining workers. Main insights about workers’ requirements were directed towards: • contacts with closest; • warm rest time around proper and varied meals; • additional services to help them better enjoy their life onsite and/or make the most of it; • organise their transportation; • promote community living; and • finding balance between professional and personal life. The brief for this current research is aimed at building upon this knowledge. Research brief Expectations for quality of life and wellness and wellbeing services are increasing dramatically. It's getting costlier and more difficult to retain valuable employees. This is particularly the case in the Australian mining sector. Given the level of interest in ensuring healthy workplaces in Australia, Sodexo has commissioned QUT to conduct a literature review. The objectives as specified by Sodexo are: Objective 1: To define the concepts of wellness and wellbeing and quality of life in Australia Objective 2: To examine how wellness and wellbeing are developed within organisations in Australia and how they impact on employee and organizational performance. More specifically, to review the literature that could be sourced about: • challenges of the mining environment; • the mining lifestyle – implications for health, wellness and daily life; • personal health and wellness of Australian mining workers; • factors affecting health in mines and perceived support for health and wellness; and • the impact of employer investment in health on perceptions and behaviour of employees. Objective 3: To determine what impact employee wellness and well-being has on the performance of mining workers. More specifically, to review the literature that could be sourced about: • impact of obesity, alcohol, tobacco use on companies; and • links between employee engagement and satisfaction and company productivity. Accordingly this review has attempted to ascertain what factors an organisation should focus on in order to reduce absenteeism and turnover and increase commitment, satisfaction, safety and productivity, with specific reference to the mining industry in Australia. The structure of the report aligns with the stated objectives in that each of the first three parts address an objective. Part IV summarises prominent issues that have arisen and offers some concluding observations and comments.
Resumo:
In this paper, an interactive planning and scheduling framework are proposed for optimising operations from pits to crushers in ore mining industry. Series of theoretical and practical operations research techniques are investigated to improve the overall efficiency of mining systems due to the facts that mining managers need to tackle optimisation problems within different horizons and with different levels of detail. Under this framework, mine design planning,mine production sequencing and mine transportation scheduling models are integrated and interacted within a whole optimisation system. The proposed integrated framework could be used by mining industry for reducing equipment costs, improving the production efficiency and maximising the net present value.
Resumo:
This paper proposes a new multi-resource multi-stage scheduling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints have been considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times of equipment; equipment-assignment-dependent operation times of blocks; distances between each pair of blocks; due windows of blocks; material properties of blocks; swell factors of blocks; and slope requirements of blocks. It is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level. The model also provides an intelligent decision support tool to account for the availability and usage of equipment units for drilling, blasting and excavating stages.
Resumo:
In the mining optimisation literature, most researchers focused on two strategic-level and tactical-level open-pit mine optimisation problems, which are respectively termed ultimate pit limit (UPIT) or constrained pit limit (CPIT). However, many researchers indicate that the substantial numbers of variables and constraints in real-world instances (e.g., with 50-1000 thousand blocks) make the CPIT’s mixed integer programming (MIP) model intractable for use. Thus, it becomes a considerable challenge to solve the large scale CPIT instances without relying on exact MIP optimiser as well as the complicated MIP relaxation/decomposition methods. To take this challenge, two new graph-based algorithms based on network flow graph and conjunctive graph theory are developed by taking advantage of problem properties. The performance of our proposed algorithms is validated by testing recent large scale benchmark UPIT and CPIT instances’ datasets of MineLib in 2013. In comparison to best known results from MineLib, it is shown that the proposed algorithms outperform other CPIT solution approaches existing in the literature. The proposed graph-based algorithms leads to a more competent mine scheduling optimisation expert system because the third-party MIP optimiser is no longer indispensable and random neighbourhood search is not necessary.
Resumo:
This paper proposes a new multi-resource multi-stage mine production timetabling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints are considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times; equipment-assignment-dependent operational times; etc. The model also provides the availability and usage of equipment units at multiple operational stages such as drilling, blasting and excavating stages. The problem is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level.
Resumo:
This paper proposes a new multi-stage mine production timetabling (MMPT) model to optimise open-pit mine production operations including drilling, blasting and excavating under real-time mining constraints. The MMPT problem is formulated as a mixed integer programming model and can be optimally solved for small-size MMPT instances by IBM ILOG-CPLEX. Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm based on the extended disjunctive graph is developed to solve large-size MMPT instances in an effective and efficient way. Extensive computational experiments are presented to validate the proposed algorithm that is able to efficiently obtain the near-optimal operational timetable of mining equipment units. The advantages are indicated by sensitivity analysis under various real-life scenarios. The proposed MMPT methodology is promising to be implemented as a tool for mining industry because it is straightforwardly modelled as a standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly expanded by adopting additional industrial constraints.
Resumo:
This thesis increased the researchers understanding of the relationship between operations and maintenance in underground longwall coal mines, using data from a Queensland underground coal mine. The thesis explores various relationships between recorded variables. Issues with human recorded data was uncovered, and results emphasised the significance of variables associated with conveyor operation to explain production.
Resumo:
Background Australia’s mineral, resource and infrastructure sectors continues to expand as operations in rural and remote locations increasingly rely on fly-in, fly-out or drive-in, drive-out workforces in order to become economically competitive. The issues in employing these workforces are becoming more apparent and include a range of physical, mental, psychosocial, safety and community challenges. Objectives This review aims to consolidate a range of research conducted to communicate potential challenges for industry in relation to a wide variety of issues when engaging and using FIFO/DIDO workforces which includes roster design, working hours, fatigue, safety performance, employee wellbeing, turnover, psychosocial relationships and community concerns. Methods A wide literature review was performed using EBSCOhost and Google Scholar, with a focus on FIFO or DIDO workforces engaged within the resources sector. Results A number of existing gaps in the management of FIFO workforces and potential for future research were identified. This included the identification of various roster designs and hours worked across the resources industry and how to best understand the influences of roster swings, and work hours on fatigue, safety, psychological wellbeing and job satisfaction. Fatigue management, particularly in relation to travelling after extended work shifts can increase the risk for road safety and influence safety performance while at work due to a culmination of long hours, roster cycle and accumulated sleep debt. Further challenges associated with the engagement of this workforce include feelings of isolation, physiological and general health and lifestyle concerns. Conclusions FIFO workforces appear to be at an increased risk physically and mentally due to a wide range of influences of this unique lifestyle, particularly in relation to rosters, length of shift and feelings of community disengagement. Research and data collected has been limited in understanding the influences on employee engagement, satisfaction, retention and safety. Ensuring the challenges associated with FIFO employment are understood, addressed and communicated to workers and their families may assist.