142 resultados para Bulk Viscosity
Resumo:
Values of Ko, Flory constant related to unperturbed dimensions, are evaluated for methyl methacrylate-acrylonitrile random copolymers using Flory-Fox, Kurata-Stockmayer and Inagaki-Ptitsyn methods and compared with the Ko values obtained by Stockmayer-Fixman method. Ko values are seen to be less in solvents which have large a (Mark-Houwink exponent) values. A correlation between Ko and a is developed to arrive at a more reliable estimate of Ko for this copolymer system.
Resumo:
The pressure and temperature dependence of the electrical resistivity of bulk glassy Ge20Te80 is reported. The effect of annealing is also studied. The glass undergoes a polymorphous or congruent crystallization under high pressures. The high pressure phase is found to have fcc structure with Image . Under thermal treatment the glass undergoes the double stage crystallization. The sample annealed at the first crystallization temperature shows a pressure induced semiconductor-to-metal transition at 4.0 GPa pressure and the crystalline Ge20Te80 samples show the transition at 7 GPa pressure.
Resumo:
Plasticity in amorphous alloys is associated with strain softening, induced by the creation of additional free volume during deformation. In this paper, the role of free volume, which was a priori in the material, on work softening was investigated. For this, an as-cast Zr-based bulk metallic glass (BMG) was systematically annealed below its glass transition temperature, so as to reduce the free volume content. The bonded-interface indentation technique is used to generate extensively deformed and well defined plastic zones. Nanoindentation was utilized to estimate the hardness of the deformed as well as undeformed regions. The results show that the structural relaxation annealing enhances the hardness and that both the subsurface shear band number density and the plastic zone size decrease with annealing time. The serrations in the nanoindentation load-displacement curves become smoother with structural relaxation. Regardless of the annealing condition, the nanohardness of the deformed regions is similar to 12-15% lower, implying that the prior free volume only changes the yield stress (or hardness) but not the relative flow stress (or the extent of strain softening). Statistical distributions of the nanohardness obtained from deformed and undeformed regions have no overlap, suggesting that shear band number density has no influence on the plastic characteristics of the deformed region.
Resumo:
An experimental study to ascertain the ductile-to-brittle transition (DBT) in a bulk metallic glass (BMG) was conducted. Results of the impact toughness tests conducted at various temperatures on as-cast and structurally relaxed Zr-based BMG show a sharp DBT. The DBT temperature was found to be sensitive to the free-volume content in the alloy. Possible factors that result in the DBT were critically examined. It was found that the postulate of a critical free volume required for the amorphous alloy to exhibit good toughness cannot rationalize the experimental trends. Likewise, the Poisson's ratio-toughness correlations, which suggest a critical Poisson's ratio above which all glasses are tough, were found not to hold good. Viscoplasticity theories, developed using the concept of shear transformation zones and which describe the temperature and strain rate dependence of the crack-tip plasticity in BMGs, appear to be capable of capturing the essence of the experiments. Our results highlight the need for a more generalized theory to understand the origins of toughness in BMGs.
Resumo:
The deformation and fracture response of a bulk metallic glass (BMG) post-annealing above the glass transition temperature is examined. The toughness of the glass-matrix composite exhibits a sharp transition beyond a critical volume fraction of crystallization to values as low as that of brittle silicate glass. Instrumented indentation tests supplemented by impact tests were used to study this ductile to brittle transition exhibited by the partially crystallized samples. Indentation on the anneal-embrittled specimens shows lateral cracks in addition to cracks along the corners. The applicability of the Poisson's ratio-toughness correlation with respect to partially crystallized samples is also investigated.
Resumo:
The pressure dependence of the electrical of the electrical resistivity of bulk GeSe2 glass shows a semiconductor-to-metal transition at 7 GPa pressure. The high pressure phase is examined using he x-ray diffractometer and is found to be crystalline, with a face-centered cubic structure having a =4.06A. The electrical conductivity has also been studied as a function of temperature at various pressures.
Resumo:
The effect of pressure on the electrical resistivity of amorphous n-type (GeSe3.5)100�xBix been studied in a Bridgeman anvil system up to a pressure of 90 kbar down to liquid nitrogen temperature. A continuous amorphous semiconductor to metal-like solid transition in the undoped GeSe3.5 is observed at room temperature. Incorporation of Bi in the GeSe3.5 network is found to significantly disturb the behaviour of the resistivity with pressure. With increasing Bi concentration a much broader variation in resistivity with pressure is observed. The temperature dependence of the resistivity and activation energy at different pressures is also measured and they are found to be composition dependent. Results are discussed in the light of the Phillips Model of ordered clusters in chalcogenide semiconductors.
Resumo:
The effect of pressure on the electrical resistivity of bulk Si20Te80 glass has been studied up to a pressure of 8 GPa. A discontinuous transition occurs at a pressure of 7 GPa. The X-ray diffraction studies on the pressure quenched sample show that the high pressure phase is crystalline with hexagonal structure (c/a = 1.5). On heating, the high pressure hexagonal phase has on exothermic decomposition atT = 586 K into two crystalline phases, which are the stable phases tellurium and SiTe2 obtained by simple heating of the glass.
Resumo:
An irreversible pressure induced semiconductor-to-metal transition in bulk Ge20Te80 glass is observed at about 5 GPa pressure. The high pressure phase has a face centered cubic structure with a lattice constant 6.42 A° as deduced by X-ray diffraction studies on the pressure quenched samples. The temperature and pressure dependence of the electrical resistivity confirms the observed transition to be a semiconductor-to-metal transition. The temperature dependence of thermo electric power is also reported.
Resumo:
A kinetic model has been developed for the bulk polymerization of vinyl chloride using Talamini's hypothesis of two-phase polymerization and a new concept of kinetic solubility which assumes that rapidly growing polymer chains have considerably greater solubility than the thermodynamic solubility of preformed polymer molecules of the same size and so can remain in solution even under thermodynamically unfavourable conditions. It is further assumed that this kinetic solubility is a function of chain length. The model yields a rate expression consistent with the experimental data for vinyl chloride bulk polymerization and moreover is able to explain several characteristic kinetic features of this system. Application of the model rate expression to the available rate data has yielded 2.36 × 108l mol−1 sec−1 for the termination rate constant in the polymer-rich phase; as expected, this value is smaller than that reported for homogenous polymerization by a factor of 10–30.
Application of Artificial Viscosity in Establishing Supercritical Solutions to the Transonic Integra
Resumo:
The nonlinear singular integral equation of transonic flow is examined in the free-stream Mach number range where only solutions with shocks are known to exist. It is shown that, by the addition of an artificial viscosity term to the integral equation, even the direct iterative scheme, with the linear solution as the initial iterate, leads to convergence. Detailed tables indicating how the solution varies with changes in the parameters of the artificial viscosity term are also given. In the best cases (when the artificial viscosity is smallest), the solutions compare well with known results, their characteristic feature being the representation of the shock by steep gradients rather than by abrupt discontinuities. However, 'sharp-shock solutions' have also been obtained by the implementation of a quadratic iterative scheme with the 'artificial viscosity solution' as the initial iterate; the converged solution with a sharp shock is obtained with only a few more iterates. Finally, a review is given of various shock-capturing and shock-fitting schemes for the transonic flow equations in general, and for the transonic integral equation in particular, frequent comparisons being made with the approach of this paper.