38 resultados para conditional unemployment volatility
em Helda - Digital Repository of University of Helsinki
Resumo:
A better understanding of stock price changes is important in guiding many economic activities. Since prices often do not change without good reasons, searching for related explanatory variables has involved many enthusiasts. This book seeks answers from prices per se by relating price changes to their conditional moments. This is based on the belief that prices are the products of a complex psychological and economic process and their conditional moments derive ultimately from these psychological and economic shocks. Utilizing information about conditional moments hence makes it an attractive alternative to using other selective financial variables in explaining price changes. The first paper examines the relation between the conditional mean and the conditional variance using information about moments in three types of conditional distributions; it finds that the significance of the estimated mean and variance ratio can be affected by the assumed distributions and the time variations in skewness. The second paper decomposes the conditional industry volatility into a concurrent market component and an industry specific component; it finds that market volatility is on average responsible for a rather small share of total industry volatility — 6 to 9 percent in UK and 2 to 3 percent in Germany. The third paper looks at the heteroskedasticity in stock returns through an ARCH process supplemented with a set of conditioning information variables; it finds that the heteroskedasticity in stock returns allows for several forms of heteroskedasticity that include deterministic changes in variances due to seasonal factors, random adjustments in variances due to market and macro factors, and ARCH processes with past information. The fourth paper examines the role of higher moments — especially skewness and kurtosis — in determining the expected returns; it finds that total skewness and total kurtosis are more relevant non-beta risk measures and that they are costly to be diversified due either to the possible eliminations of their desirable parts or to the unsustainability of diversification strategies based on them.
Resumo:
Utilizing concurrent 5-minute returns, the intraday dynamics and inter-market dependencies in international equity markets were investigated. A strong intraday cyclical autocorrelation structure in the volatility process was observed to be caused by the diurnal pattern. A major rise in contemporaneous cross correlation among European stock markets was also noticed to follow the opening of the New York Stock Exchange. Furthermore, the results indicated that the returns for UK and Germany responded to each other’s innovations, both in terms of the first and second moment dependencies. In contrast to earlier research, the US stock market did not cause significant volatility spillover to the European markets.
Resumo:
Volatility is central in options pricing and risk management. It reflects the uncertainty of investors and the inherent instability of the economy. Time series methods are among the most widely applied scientific methods to analyze and predict volatility. Very frequently sampled data contain much valuable information about the different elements of volatility and may ultimately reveal the reasons for time varying volatility. The use of such ultra-high-frequency data is common to all three essays of the dissertation. The dissertation belongs to the field of financial econometrics. The first essay uses wavelet methods to study the time-varying behavior of scaling laws and long-memory in the five-minute volatility series of Nokia on the Helsinki Stock Exchange around the burst of the IT-bubble. The essay is motivated by earlier findings which suggest that different scaling laws may apply to intraday time-scales and to larger time-scales, implying that the so-called annualized volatility depends on the data sampling frequency. The empirical results confirm the appearance of time varying long-memory and different scaling laws that, for a significant part, can be attributed to investor irrationality and to an intraday volatility periodicity called the New York effect. The findings have potentially important consequences for options pricing and risk management that commonly assume constant memory and scaling. The second essay investigates modelling the duration between trades in stock markets. Durations convoy information about investor intentions and provide an alternative view at volatility. Generalizations of standard autoregressive conditional duration (ACD) models are developed to meet needs observed in previous applications of the standard models. According to the empirical results based on data of actively traded stocks on the New York Stock Exchange and the Helsinki Stock Exchange the proposed generalization clearly outperforms the standard models and also performs well in comparison to another recently proposed alternative to the standard models. The distribution used to derive the generalization may also prove valuable in other areas of risk management. The third essay studies empirically the effect of decimalization on volatility and market microstructure noise. Decimalization refers to the change from fractional pricing to decimal pricing and it was carried out on the New York Stock Exchange in January, 2001. The methods used here are more accurate than in the earlier studies and put more weight on market microstructure. The main result is that decimalization decreased observed volatility by reducing noise variance especially for the highly active stocks. The results help risk management and market mechanism designing.
Resumo:
One of the most fundamental and widely accepted ideas in finance is that investors are compensated through higher returns for taking on non-diversifiable risk. Hence the quantification, modeling and prediction of risk have been, and still are one of the most prolific research areas in financial economics. It was recognized early on that there are predictable patterns in the variance of speculative prices. Later research has shown that there may also be systematic variation in the skewness and kurtosis of financial returns. Lacking in the literature so far, is an out-of-sample forecast evaluation of the potential benefits of these new more complicated models with time-varying higher moments. Such an evaluation is the topic of this dissertation. Essay 1 investigates the forecast performance of the GARCH (1,1) model when estimated with 9 different error distributions on Standard and Poor’s 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of variance from intra-day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. In Essay 2, by using 20 years of daily Standard and Poor 500 index returns, it is found that density forecasts are much improved by allowing for constant excess kurtosis but not improved by allowing for skewness. By allowing the kurtosis and skewness to be time varying the density forecasts are not further improved but on the contrary made slightly worse. In Essay 3 a new model incorporating conditional variance, skewness and kurtosis based on the Normal Inverse Gaussian (NIG) distribution is proposed. The new model and two previously used NIG models are evaluated by their Value at Risk (VaR) forecasts on a long series of daily Standard and Poor’s 500 returns. The results show that only the new model produces satisfactory VaR forecasts for both 1% and 5% VaR Taken together the results of the thesis show that kurtosis appears not to exhibit predictable time variation, whereas there is found some predictability in the skewness. However, the dynamic properties of the skewness are not completely captured by any of the models.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
Resumo:
This paper examines how volatility in financial markets can preferable be modeled. The examination investigates how good the models for the volatility, both linear and nonlinear, are in absorbing skewness and kurtosis. The examination is done on the Nordic stock markets, including Finland, Sweden, Norway and Denmark. Different linear and nonlinear models are applied, and the results indicates that a linear model can almost always be used for modeling the series under investigation, even though nonlinear models performs slightly better in some cases. These results indicate that the markets under study are exposed to asymmetric patterns only to a certain degree. Negative shocks generally have a more prominent effect on the markets, but these effects are not really strong. However, in terms of absorbing skewness and kurtosis, nonlinear models outperform linear ones.
Resumo:
This paper investigates to what extent the volatility of Finnish stock portfolios is transmitted through the "world volatility". We operationalize the volatility processes of Finnish leverage, industry, and size portfolio returns by asymmetric GARCH specifications according to Glosten et al. (1993). We use daily return data for January, 2, 1987 to December 30, 1998. We find that the world shock significantly enters the domestic models, and that the impact has increased over time. This applies also for the variance ratios, and the correlations to the world. The larger the firm, the larger is the world impact. The conditional variance is higher during recessions. The asymmetry parameter is surprisingly non-significant, and the leverage hypothesis cannot be verified. The return generating process of the domestic portfolio returns does usually not include the world information set, thus indicating that the returns are generated by a segmented conditional asset pricing model.
Resumo:
Nephrin is a transmembrane protein belonging to the immunoglobulin superfamily and is expressed primarily in the podocytes, which are highly differentiated epithelial cells needed for primary urine formation in the kidney. Mutations leading to nephrin loss abrogate podocyte morphology, and result in massive protein loss into urine and consequent early death in humans carrying specific mutations in this gene. The disease phenotype is closely replicated in respective mouse models. The purpose of this thesis was to generate novel inducible mouse-lines, which allow targeted gene deletion in a time and tissue-specific manner. A proof of principle model for succesful gene therapy for this disease was generated, which allowed podocyte specific transgene replacement to rescue gene deficient mice from perinatal lethality. Furthermore, the phenotypic consequences of nephrin restoration in the kidney and nephrin deficiency in the testis, brain and pancreas in rescued mice were investigated. A novel podocyte-specific construct was achieved by using standard cloning techniques to provide an inducible tool for in vitro and in vivo gene targeting. Using modified constructs and microinjection procedures two novel transgenic mouse-lines were generated. First, a mouse-line with doxycycline inducible expression of Cre recombinase that allows podocyte-specific gene deletion was generated. Second, a mouse-line with doxycycline inducible expression of rat nephrin, which allows podocyte-specific nephrin over-expression was made. Furthermore, it was possible to rescue nephrin deficient mice from perinatal lethality by cross-breeding them with a mouse-line with inducible rat nephrin expression that restored the missing endogenous nephrin only in the kidney after doxycycline treatment. The rescued mice were smaller, infertile, showed genital malformations and developed distinct histological abnormalities in the kidney with an altered molecular composition of the podocytes. Histological changes were also found in the testis, cerebellum and pancreas. The expression of another molecule with limited tissue expression, densin, was localized to the plasma membranes of Sertoli cells in the testis by immunofluorescence staining. Densin may be an essential adherens junction protein between Sertoli cells and developing germ cells and these junctions share similar protein assembly with kidney podocytes. This single, binary conditional construct serves as a cost- and time-efficient tool to increase the understanding of podocyte-specific key proteins in health and disease. The results verified a tightly controlled inducible podocyte-specific transgene expression in vitro and in vivo as expected. These novel mouse-lines with doxycycline inducible Cre recombinase and with rat nephrin expression will be useful for conditional gene targeting of essential podocyte proteins and to study in detail their functions in the adult mice. This is important for future diagnostic and pharmacologic development platforms.
Resumo:
Frictions are factors that hinder trading of securities in financial markets. Typical frictions include limited market depth, transaction costs, lack of infinite divisibility of securities, and taxes. Conventional models used in mathematical finance often gloss over these issues, which affect almost all financial markets, by arguing that the impact of frictions is negligible and, consequently, the frictionless models are valid approximations. This dissertation consists of three research papers, which are related to the study of the validity of such approximations in two distinct modeling problems. Models of price dynamics that are based on diffusion processes, i.e., continuous strong Markov processes, are widely used in the frictionless scenario. The first paper establishes that diffusion models can indeed be understood as approximations of price dynamics in markets with frictions. This is achieved by introducing an agent-based model of a financial market where finitely many agents trade a financial security, the price of which evolves according to price impacts generated by trades. It is shown that, if the number of agents is large, then under certain assumptions the price process of security, which is a pure-jump process, can be approximated by a one-dimensional diffusion process. In a slightly extended model, in which agents may exhibit herd behavior, the approximating diffusion model turns out to be a stochastic volatility model. Finally, it is shown that when agents' tendency to herd is strong, logarithmic returns in the approximating stochastic volatility model are heavy-tailed. The remaining papers are related to no-arbitrage criteria and superhedging in continuous-time option pricing models under small-transaction-cost asymptotics. Guasoni, Rásonyi, and Schachermayer have recently shown that, in such a setting, any financial security admits no arbitrage opportunities and there exist no feasible superhedging strategies for European call and put options written on it, as long as its price process is continuous and has the so-called conditional full support (CFS) property. Motivated by this result, CFS is established for certain stochastic integrals and a subclass of Brownian semistationary processes in the two papers. As a consequence, a wide range of possibly non-Markovian local and stochastic volatility models have the CFS property.
Resumo:
This thesis addresses modeling of financial time series, especially stock market returns and daily price ranges. Modeling data of this kind can be approached with so-called multiplicative error models (MEM). These models nest several well known time series models such as GARCH, ACD and CARR models. They are able to capture many well established features of financial time series including volatility clustering and leptokurtosis. In contrast to these phenomena, different kinds of asymmetries have received relatively little attention in the existing literature. In this thesis asymmetries arise from various sources. They are observed in both conditional and unconditional distributions, for variables with non-negative values and for variables that have values on the real line. In the multivariate context asymmetries can be observed in the marginal distributions as well as in the relationships of the variables modeled. New methods for all these cases are proposed. Chapter 2 considers GARCH models and modeling of returns of two stock market indices. The chapter introduces the so-called generalized hyperbolic (GH) GARCH model to account for asymmetries in both conditional and unconditional distribution. In particular, two special cases of the GARCH-GH model which describe the data most accurately are proposed. They are found to improve the fit of the model when compared to symmetric GARCH models. The advantages of accounting for asymmetries are also observed through Value-at-Risk applications. Both theoretical and empirical contributions are provided in Chapter 3 of the thesis. In this chapter the so-called mixture conditional autoregressive range (MCARR) model is introduced, examined and applied to daily price ranges of the Hang Seng Index. The conditions for the strict and weak stationarity of the model as well as an expression for the autocorrelation function are obtained by writing the MCARR model as a first order autoregressive process with random coefficients. The chapter also introduces inverse gamma (IG) distribution to CARR models. The advantages of CARR-IG and MCARR-IG specifications over conventional CARR models are found in the empirical application both in- and out-of-sample. Chapter 4 discusses the simultaneous modeling of absolute returns and daily price ranges. In this part of the thesis a vector multiplicative error model (VMEM) with asymmetric Gumbel copula is found to provide substantial benefits over the existing VMEM models based on elliptical copulas. The proposed specification is able to capture the highly asymmetric dependence of the modeled variables thereby improving the performance of the model considerably. The economic significance of the results obtained is established when the information content of the volatility forecasts derived is examined.
Resumo:
Väitöskirja koostuu neljästä esseestä, joissa tutkitaan empiirisen työntaloustieteen kysymyksiä. Ensimmäinen essee tarkastelee työttömyysturvan tason vaikutusta työllistymiseen Suomessa. Vuonna 2003 ansiosidonnaista työttömyysturvaa korotettiin työntekijöille, joilla on pitkä työhistoria. Korotus oli keskimäärin 15 % ja se koski ensimmäistä 150 työttömyyspäivää. Tutkimuksessa arvioidaan korotuksen vaikutus vertailemalla työllistymisen todennäköisyyksiä korotuksen saaneen ryhmän ja vertailuryhmän välillä ennen uudistusta ja sen jälkeen. Tuloksien perusteella työttömyysturvan korotus laski työllistymisen todennäköisyyttä merkittävästi, keskimäärin noin 16 %. Korotuksen vaikutus on suurin työttömyyden alussa ja se katoaa kun oikeus korotettuun ansiosidonnaiseen päättyy. Toinen essee tutkii työttömyyden pitkän aikavälin kustannuksia Suomessa keskittyen vuosien 1991 – 1993 syvään lamaan. Laman aikana toimipaikkojen sulkeminen lisääntyi paljon ja työttömyysaste nousi yli 13 prosenttiyksikköä. Tutkimuksessa verrataan laman aikana toimipaikan sulkemisen vuoksi työttömäksi jääneitä parhaassa työiässä olevia miehiä työllisinä pysyneisiin. Työttömyyden vaikutusta tarkastellaan kuuden vuoden seurantajaksolla. Vuonna 1999 työttömyyttä laman aikana kokeneen ryhmän vuosiansiot olivat keskimäärin 25 % alemmat kuin vertailuryhmässä. Tulojen menetys johtui sekä alhaisemmasta työllisyydestä että palkkatasosta. Kolmannessa esseessä tarkastellaan Suomen 1990-luvun alun laman aiheuttamaa työttömyysongelmaa tutkimalla työttömyyden kestoon vaikuttavia tekijöitä yksilötasolla. Kiinnostuksen kohteena on työttömyyden rakenteen ja työn kysynnän muutoksien vaikutus keskimääräiseen kestoon. Usein oletetaan, että laman seurauksena työttömäksi jää keskimääräistä huonommin työllistyviä henkilöitä, jolloin se itsessään pidentäisi keskimääräistä työttömyyden kestoa. Tuloksien perusteella makrotason kysyntävaikutus oli keskeinen työttömyyden keston kannalta ja rakenteen muutoksilla oli vain pieni kestoa lisäävä vaikutus laman aikana. Viimeisessä esseessä tutkitaan suhdannevaihtelun vaikutusta työpaikkaonnettomuuksien esiintymiseen. Tutkimuksessa käytetään ruotsalaista yksilötason sairaalahoitoaineistoa, joka on yhdistetty populaatiotietokantaan. Aineiston avulla voidaan tutkia vaihtoehtoisia selityksiä onnettomuuksien lisääntymiselle noususuhdanteessa, minkä on esitetty johtuvan esim. stressin tai kiireen vaikutuksesta. Tuloksien perusteella työpaikkaonnettomuudet ovat syklisiä, mutta vain tiettyjen ryhmien kohdalla. Työvoiman rakenteen vaihtelu saattaa selittää osan naisten onnettomuuksien syklisyydestä. Miesten kohdalla vain vähemmän vakavat onnettomuudet ovat syklisiä, mikä saattaa johtua strategisesta käyttäytymisestä.
Resumo:
Atmospheric aerosol particles affect the global climate as well as human health. In this thesis, formation of nanometer sized atmospheric aerosol particles and their subsequent growth was observed to occur all around the world. Typical formation rate of 3 nm particles at varied from 0.01 to 10 cm-3s-1. One order of magnitude higher formation rates were detected in urban environment. Highest formation rates up to 105 cm-3s-1 were detected in coastal areas and in industrial pollution plumes. Subsequent growth rates varied from 0.01 to 20 nm h-1. Smallest growth rates were observed in polar areas and the largest in the polluted urban environment. This was probably due to competition between growth by condensation and loss by coagulation. Observed growth rates were used in the calculation of a proxy condensable vapour concentration and its source rate in vastly different environments from pristine Antarctica to polluted India. Estimated concentrations varied only 2 orders of magnitude, but the source rates for the vapours varied up to 4 orders of magnitude. Highest source rates were in New Delhi and lowest were in the Antarctica. Indirect methods were applied to study the growth of freshly formed particles in the atmosphere. Also a newly developed Water Condensation Particle Counter, TSI 3785, was found to be a potential candidate to detect water solubility and thus indirectly composition of atmospheric ultra-fine particles. Based on indirect methods, the relative roles of sulphuric acid, non-volatile material and coagulation were investigated in rural Melpitz, Germany. Condensation of non-volatile material explained 20-40% and sulphuric acid the most of the remaining growth up to a point, when nucleation mode reached 10 to 20 nm in diameter. Coagulation contributed typically less than 5%. Furthermore, hygroscopicity measurements were applied to detect the contribution of water soluble and insoluble components in Athens. During more polluted days, the water soluble components contributed more to the growth. During less anthropogenic influence, non-soluble compounds explained a larger fraction of the growth. In addition, long range transport to a measurement station in Finland in a relatively polluted air mass was found to affect the hygroscopicity of the particles. This aging could have implications to cloud formation far away from the pollution sources.
Resumo:
The increased availability of high frequency data sets have led to important new insights in understanding of financial markets. The use of high frequency data is interesting and persuasive, since it can reveal new information that cannot be seen in lower data aggregation. This dissertation explores some of the many important issues connected with the use, analysis and application of high frequency data. These include the effects of intraday seasonal, the behaviour of time varying volatility, the information content of various market data, and the issue of inter market linkages utilizing high frequency 5 minute observations from major European and the U.S stock indices, namely DAX30 of Germany, CAC40 of France, SMI of Switzerland, FTSE100 of the UK and SP500 of the U.S. The first essay in the dissertation shows that there are remarkable similarities in the intraday behaviour of conditional volatility across European equity markets. Moreover, the U.S macroeconomic news announcements have significant cross border effect on both, European equity returns and volatilities. The second essay reports substantial intraday return and volatility linkages across European stock indices of the UK and Germany. This relationship appears virtually unchanged by the presence or absence of the U.S stock market. However, the return correlation among the U.K and German markets rises significantly following the U.S stock market opening, which could largely be described as a contemporaneous effect. The third essay sheds light on market microstructure issues in which traders and market makers learn from watching market data, and it is this learning process that leads to price adjustments. This study concludes that trading volume plays an important role in explaining international return and volatility transmissions. The examination concerning asymmetry reveals that the impact of the positive volume changes is larger on foreign stock market volatility than the negative changes. The fourth and the final essay documents number of regularities in the pattern of intraday return volatility, trading volume and bid-ask spreads. This study also reports a contemporaneous and positive relationship between the intraday return volatility, bid ask spread and unexpected trading volume. These results verify the role of trading volume and bid ask quotes as proxies for information arrival in producing contemporaneous and subsequent intraday return volatility. Moreover, asymmetric effect of trading volume on conditional volatility is also confirmed. Overall, this dissertation explores the role of information in explaining the intraday return and volatility dynamics in international stock markets. The process through which the information is incorporated in stock prices is central to all information-based models. The intraday data facilitates the investigation that how information gets incorporated into security prices as a result of the trading behavior of informed and uninformed traders. Thus high frequency data appears critical in enhancing our understanding of intraday behavior of various stock markets’ variables as it has important implications for market participants, regulators and academic researchers.