19 resultados para bone morphogenetic protein 15

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of many embryonic organs is regulated by reciprocal and sequential epithelial-mesenchymal interactions. These interactions are mediated by conserved signaling pathways that are reiteratively used. Cleidocranial dysplasia (CCD) is a congenital syndrome where both bone and tooth development is affected. The syndrome is characterized by short stature, abnormal clavicles, general bone dysplasia, and supernumerary teeth. CCD is caused by mutations in RUNX2, a transcription factor that is a key regulator of osteoblast differentiation and bone formation. The first aim of this study was to analyse the expression of a family of key signal molecules, Bone morphogenetic protein (Bmp) at different stages of tooth development. Bmps have a variety of functions and they were originally discovered as signals inducing ectopic bone formation. We performed a comparative in situ hybridisation analysis of the mRNA expression of Bmp2-7 from initiation of tooth development to differentiation of dental hard tissues. The expression patterns indicated that the Bmps signal between the epithelial and mesenchymal tissues during initiation and morphogenesis of tooth development, as well as during the differentiation of odontoblasts and ameloblasts. Furthermore, they are also part of the signalling networks whereby the enamel knot regulates the patterning of tooth cusps. The second aim was to study the role of Runx2 during tooth development and thereby to gain better understanding of the pathogenesis of the tooth phenotype in CCD. We analysed the tooth phenotype of Runx2 knockout mice and examined the patterns and regulation of Runx2 gene expression.. The teeth of wild-type and Runx2 mutant mice were compared by several methods including in situ hybridisation, tissue culture, bead implantation experiments, and epithelial-mesenchymal recombination studies. Phenotypic analysis of Runx2 -/- mutant tooth development showed that teeth failed to advance beyond the bud stage. Runx2 expression was restricted to dental mesenchyme between the bud and early bell stages of tooth development and it was regulated by epithelial signals, in particular Fgfs. We searched for downstream targets of Runx2 by comparative in situ hybridisation analysis. The expression of Fgf3 was downregulated in the mesenchyme of Runx2 -/- teeth. Shh expression was absent from the enamel knot in the lower molars of Runx2 -/- and reduced in the upper molars. In conclusion, these studies showed that Runx2 regulates key epithelial-mesenchymal interactions that control advancing tooth morphogenesis and histodifferentiation of the epithelial enamel organ. In addition, in the upper molars of Runx2 mutants extra buddings occured at the palatal side of the tooth bud. We suggest that Runx2 acts as an inhibitor of successional tooth formation by preventing advancing development of the buds. Accordingly, we propose that RUNX2 haploinsuffiency in humans causes incomplete inhibition of successional tooth formation and as a result supernumerary teeth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary pulmonary hypertension (PPH), or according to the recent classification idiopathic pulmonary hypertension (IPAH), is a rare, progressive disease of pulmonary vasculature leading to pulmonary hypertension and right heart failure. Most of the patients are sporadic but in about 6% of cases the disease is familial (FPPH). In 2000 two different groups identified the gene predisposing to PPH. This gene, Bone morphogenetic protein receptor type 2 (BMPR2), encodes a subunit of transforming growth factor β (TGF-β) receptor complex. There is a genetic connection between PPH and hereditary hemorrhagic telangiectasia (HHT), a bleeding disorder characterized by local telangiectasias and sometimes with pulmonary hypertension. In HHT, mutations in ALK1 (activin like kinase type 1) and Endoglin, another members of the TGF-β signaling pathway are found. In this study we identified all of the Finnish PPH patients for the years 1986-1999 using the hospital discharge registries of Finnish university hospitals. During this period we found a total of 59 confirmed PPH patients: 55 sporadic and 4 familial representing 3 different families. In 1999 the prevalence of PPH was 5.8 per million and the annual incidence varied between 0.2-1.3 per million. Among 28 PPH patients studied, heterozygous BMPR2 mutations were found in 12% (3/26) of sporadic patients and in 33% of the PPH families (1/3). All the mutations found were different. Large deletions of BMPR2 were excluded by single-stranded chain polymomorphism analysis. As a candidate gene approach we also studied ALK1, Endoglin, Bone Morphogenetic Receptor Type IA (BMPR1A or ALK3), Mothers Against Decapentaplegic Homolog 4 (SMAD4) and Serotonine Transporter Gene (SLC6A4) using single-strand conformational polymorphism (SSCP) analysis and direct sequencing. Among patients and family members studied, we found two mutations in ALK1 in two unrelated samples. We also identified all the HHT patients treated at the Department of Otorhinolaryngology at Helsinki University Central Hospital between the years of 1990-2005 and 8 of the patients were studied for Endoglin and ALK1 mutations using direct sequencing. A total of seven mutations were found and all the mutations were different. The absence of a founder mutation in the Finnish population in both PPH and HHT was somewhat surprising. This suggests that the mutations of BMPR2, ALK1 and Endoglin are quite young and the older mutations have been lost due to repetitive genetic bottlenecks and/or negative selection. Also, other genes than BMPR2 may be involved in the pathogenesis of PPH. No founder mutations were found in PPH or HHT and thus no simple genetic test is available for diagnostics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malignant mesothelioma (MM) is a rare, usually incurable, disease mainly caused by former exposure to asbestos. Even though MM has a strong etiological link, genetic factors may play a role, since not all cases can be linked to former asbestos exposure. This thesis focuses on lung diseases, mainly malignant mesothelioma (MM), and idiopathic pulmonary fibrosis (IPF), which resembles asbestosis. The specific asbestos-related pathways associated with malignant as well as non-malignant lung diseases, still need to be clarified. Since most patients diagnosed with MM or asbestosis/fibrosis have a dismal prognosis and few therapeutic options are available, early diagnosis and better understanding of the disease pathogenesis are of the utmost importance. The first objective of this thesis was to identify asbestos specific differentially expressed genes. This was approached by using high-resolution gene expression arrays, and three different human lung cell lines, as well as with three different bioinformatics approaches. Since the first study aimed to elucidate potential early changes, the second study was used to screen DNA copy number changes in MM tumour samples. This was performed using genome wide microarrays for identification of DNA copy number changes characterstic for MM. Study III focused on the role of gremlin in the regulation of bone morphogenetic protein (BMPs) in IPF. Further studies were conducted in asbestos-exposed cell cultures as well as in an asbestos-induced mouse model. Furthermore, GATA-6 was studied in MM and metastatic pleural adenocarcinoma. The GATA transcription factors are important during embryonic development, but their role in cancer is still unclear. GATA-6 is a co-factor/target of thyroid transcription factor 1 (TTF-1), which is used in differential diagnostics of pleural MM and adenocarcinoma. Bioinformatics probed the genes and biological processes ordered in terms of significance, clusters, and highly enriched chromosomal regions. The study revealed several already identified targets, produced new ideas about genes which are central for asbestos exposure, as well as provided supplementary data for researchers to check their own novel findings or ideas. The analysis revealed DNA copy number changes characteristic for MM tumors. The most common regions of loss were detected in 1p, 3p, 6q, 9p, 13, 14, and 22, and gains at 17q. The histological features in asbestosis and IPF are very similar, wherefore IPF can be studied in asbestos models. The BMP antagonist gremlin was up-regulated by asbestos exposure in human epithelial cell lines, which was also observed in Study I. The transforming growth factor (TGF) -β and BMP expression and signaling activities were measured from murine and human fibrotic lungs. BMP-7 signaling was down-regulated in response to up-regulation of gremlin, and restoration of BMP-7 signaling prevented progression of fibrosis in mice. Therefore, the study suggests that the restoration of BMP-7 signaling in fibrotic lung could potentially aid in the treatment of IPF patients. Study IV revealed that GATA-6 was strongly expressed in the majority of the MM cases, and correlated statistically significant with longer survival in subgroups of MM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work focuses on the role of TGF-beta family antagonists during the development of mouse dentition. Tooth develops through an interaction between the dental epithelium and underlying neural crest derived mesenchyme. The reciprocal signaling between these tissues is mediated by soluble signaling molecules and the balance between activatory and inhibitory signals appears to be essential for the pattern formation. We showed the importance of Sostdc1 in the regulation of tooth shape and number. The absence of Sostdc1 altered the molar cusp patterning and led to supernumerary tooth formation both in the molar and incisor region. We showed that initially, Sostdc1 expression is in the mesenchyme, suggesting that dental mesenchyme may limit supernumerary tooth induction. We tested this in wild-type incisors by minimizing the amount of mesenchymal tissue surrounding the incisor tooth germs prior to culture in vitro. The cultured teeth phenocopied the extra incisor phenotype of the Sostdc1-deficient mice. Furthermore, we showed that minimizing the amount of dental mesenchyme in cultured Sostdc1-deficient incisors caused the formation of additional de novo incisors that resembled the successional incisor development resulting from activated Wnt signaling. Sostdc1 seemed to be able to inhibit both mesenchymal BMP4 and epithelial canonical Wnt signaling, which thus allows Sostdc1 to restrict the enamel knot size and regulate the tooth shape and number. Our work emphasizes the dual role for the tooth mesenchyme as a suppressor as well as an activator during tooth development. We found that the placode, forming the thick mouse incisor, is prone to disintegration during initiation of tooth development. The balance between two mesenchymal TGF-beta family signals, BMP4 and Activin is essential in this regulation. The inhibition of BMP4 or increase in Activin signaling led to the splitting of the large incisor placode into two smaller placodes resulting in thin incisors. These two signals appeared to have different effects on tooth epithelium and the analysis of the double null mutant mice lacking Sostdc1 and Follistatin indicated that these TGF-beta inhibitors regulate the mutual balance of BMP and Activin in vivo. In addition, this work provides an alternative explanation for the issue of incisor identity published in Science by Tucker et al. in 1998 and proposes that the molar like morphology that can be obtained by inhibiting BMP signaling is due to partial splitting of the incisor placodes and not due to change in tooth identity from the incisor to the molar. This thesis work presents possible molecular mechanisms that may have modified the mouse dental pattern during evolution leading to the typical rodent dentition of modern mouse. The rodent dentition is specialized for gnawing and consists of two large continuously growing incisors and toothless diastema region separating the molars and incisors. The ancestors of rodents had higher number of more slender incisors together with canines and premolars. Additionally, murine rodents, which include the mouse, have lost their ability for tooth replacement. This work has revealed that the inhibitory molecules appear to play a role in the tooth number suppression by delineating the spatial and temporal action of the inductive signals. The results suggest that Sostdc1 plays an essential role in several stages of tooth development through the regulation of both the BMP and Wnt pathway. The work shows a dormant sequential tooth forming potential present in wild type mouse incisor region and gives a new perspective on tooth suppression by dental mesenchyme. It reveals as well a novel mechanism to create a large mouse incisor through the regulation of mesenchymal balance between inductive and inhibitory signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrition affects bone health throughout life. To optimize peak bone mass development and maintenance, it is important to pay attention to the dietary factors that enhance and impair bone metabolism. In this study, the in vivo effects of inorganic dietary phosphate and the in vitro effects of bioactive tripeptides, IPP, VPP and LKP were investigated. Dietary phosphate intake is increased through the use of convenience foods and soft drinks rich in phosphate-containing food additives. Our results show that increased dietary phosphate intake hinders mineral deposition in cortical bone and diminishes bone mineral density (BMD) in the aged skeleton in a rodent model (Study I). In the growing skeleton (Study II), increased phosphate intake was observed to reduce bone material and structural properties, leading to diminished bone strength. Studies I and II revealed that a low Ca:P ratio has negative effects on the mature and growing rat skeleton even when calcium intake is sufficient. High dietary protein intake is beneficial for bone health. Protein is essential for bone turnover and matrix formation. In addition, hydrolysis of proteins in the gastrointestinal tract produces short peptides that possess a biological function beyond that of being tissue building blocks. The effects of three bioactive tripeptides, IPP, VPP and LKP, were assessed in short- and long-term in vitro experiments. Short-term treatment (24 h) with tripeptide IPP, VPP or LKP influenced osteoblast gene expression (Study III). IPP in particular, regulates genes associated with cell differentiation, cell growth and cell signal transduction. The upregulation of these genes indicates that IPP enhances osteoblast proliferation and differentiation. Long-term treatment with IPP enhanced osteoblast gene expression in favour of bone formation and increased mineralization (Study IV). The in vivo effects of IPP on osteoblast differentiation might differ since eating frequency drives food consumption, and protein degradation products, such as bioactive peptides, are available periodically, not continuously as in this study. To sum up, Studies I and II raise concern about the appropriate amount of dietary phosphate to support bone health as excess is harmful. Studies III and IV in turn, support findings of the beneficial effects of dietary protein on bone and provide a mechanistic explanation since cell proliferation and osteoblast function were improved by treatment with bioactive tripeptide IPP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several organs of the embryo develop as appendages of the ectoderm, the outermost layer of the embryo. These organs include hair follicles, teeth and mammary glands, which all develop as a result of reciprocal tissue interactions between the surface epithelium and the underlying mesenchyme. Several signalling molecules regulate ectodermal organogenesis the most important ones being Wnts, fi broblast growth factors (Fgfs), transforming growth factor -βs (Tgf-βs) including bone morphogenetic proteins (Bmps), hedgehogs (Hhs), and tumour necrosis factors (Tnfs). This study focuses on ectodysplasin (EDA), a signalling molecule of the TNF superfamily. The effects of EDA are mediated by its receptor EDAR, an intracellular adapter protein EDARADD, and downstream activation of the transcription factor nuclear factor kappa-B (NF-кB). Mice deficient in Eda (Tabby mice), its receptor Edar (downless mice) or Edaradd (crinkled mice) show identical phenotypes characterised by defective ectodermal organ development. These mouse mutants serve as models for the human syndrome named hypohidrotic ectodermal dysplasia (HED) that is caused by mutations either in Eda, Edar or Edaradd. The purpose of this study was to characterize the ectodermal organ phenotype of transgenic mice overexpressing of Eda (K14-Eda mice), to study the role of Eda in ectodermal organogenesis using both in vivo and in vitro approaches, and to analyze the potential redundancy between the Eda pathway and other Tnf pathways. The results suggest that Eda plays a role during several stages of ectodermal organ development from initiation to differentiation. Eda signalling was shown to regulate the initiation of skin appendage development by promoting appendageal cell fate at the expense of epidermal cell fate. These effects of Eda were shown to be mediated, at least in part, through the transcriptional regulation of genes that antagonized Bmp signalling and stimulated Shh signalling. It was also shown that Eda/Edar signalling functions redundantly with Troy, which encodes a related TNF receptor, during hair development. This work has revealed several novel aspects of the function of the Eda pathway in hair and tooth development, and also suggests a previously unrecognized role for Eda in mammary gland development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with unknown aetiology and poor prognosis. IPF is characterized by alveolar epithelial damage that leads tissue remodelling and ultimately to the loss of normal lung architecture and function. Treatment has been focused on anti-inflammatory therapies, but due to their poor efficacy new therapeutic modalities are being sought. There is a need for early diagnosis and also for differential diagnostic markers for IPF and other interstitial lung diseases. The study utilized patient material obtained from bronchoalveolar lavage (BAL), diagnostic biopsies or lung transplantation. Human pulmonary fibroblast cell cultures were propagated and asbestos-induced pulmonary fibrosis in mice was used as an experimental animal model of IPF. The possible markers for IPF were scanned by immunohistochemistry, RT-PCR, ELISA and western blot. Matrix metalloproteinases (MMPs) are proteolytic enzymes that participate in tissue remodelling. Microarray studies have introduced potential markers that could serve as additional tools for the assessment of IPF and one of the most promising was MMP 7. MMP-7 protein levels were measured in the BAL fluid of patients with idiopathic interstitial lung diseases or idiopathic cough. MMP-7 was however similarly elevated in the BAL fluid of all these disorders and thus cannot be used as a differential diagnostic marker for IPF. Activation of transforming growth factor (TGF)-ß is considered to be a key element in the progression of IPF. Bone morphogenetic proteins (BMP) are negative regulators of intracellular TGF-ß signalling and BMP-4 signalling is in turn negatively regulated by gremlin. Gremlin was found to be highly upregulated in the IPF lungs and IPF fibroblasts. Gremlin was detected in the thickened IPF parenchyma and endothelium of small capillaries, whereas in non-specific interstitial pneumonia it localized predominantly in the alveolar epithelium. Parenchymal gremlin immunoreactivity might indicate IPF-type interstitial pneumonia. Gremlin mRNA levels were higher in patients with end-stage fibrosis suggesting that gremlin might be a marker for more advanced disease. Characterization of the fibroblastic foci in the IPF lungs showed that immunoreactivity to platelet-derived growth factor (PDGF) receptor-α and PDGF receptor-β was elevated in IPF parenchyma, but the fibroblastic foci showed only minor immunoreactivity to the PDGF receptors or the antioxidant peroxiredoxin II. Ki67 positive cells were also observed predominantly outside the fibroblastic foci, suggesting that the fibroblastic foci may not be composed of actively proliferating cells. When inhibition of profibrotic PDGF-signalling by imatinib mesylate was assessed, imatinib mesylate reduced asbestos-induced pulmonary fibrosis in mice as well as human pulmonary fibroblast migration in vitro but it had no effect on the lung inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nurr1, NGFI-B and Nor1 (NR4A2, NR4A1 and NR4A3, respectively) belong to the NR4A subfamily of nuclear receptors. The NR4A receptors are orphan nuclear receptors which means that activating or repressing ligands for these receptors have not been found. NR4A expression is rapidly induced in response to various stimuli including growth factors and the parathyroid hormone (PTH). The studies concerning the NR4A receptors in the central nervous system have demonstrated that they have a major role in the development and function of the dopaminergic neurons of the midbrain and in regulating hypothalamus-pituitary-adrenal-axis. However, the peripheral functions of the NR4A family are largely unknown. Cultured mouse primary osteoblasts, a preosteoblastic cell line and several osteoblastic cell lines were used to investigate the role of NR4A receptors in osteoblasts. NR4A receptors were shown to directly bind to and activate the promoter of the osteopontin gene (OPN) in osteoblastic cells, thus regulating its expression. OPN is a major bone matrix protein expressed throughout the differentiation of preosteoblastic cells into osteoblasts. The activation of the OPN promoter was shown to be dependent on the activation function-1 located in the N-terminal part of Nurr1 and to occur in both monomeric and RXR heterodimeric forms of NR4A receptors. Furthermore, PTH was shown to upregulate OPN expression through the NR4A family. It was also demonstrated that the fibroblast growth factor-8b (FGF-8b) induces the expression of NR4A receptors in osteoblasts as immediate early genes. This induction involved phosphatidylinositol-3 kinase, protein kinase C, and mitogen activated protein kinase, which are all major pathways of FGF signalling. Nurr1 and NGFI-B were shown to induce the proliferation of preosteoblastic cells and to reduce their apoptosis. FGF-8b was shown to stimulate the proliferation of osteoblastic cells through the NR4A receptors. These results suggest that NR4A receptors have a role both in the differentiation of osteoblasts and in the proliferation and apoptosis of preosteoblast. The NR4A receptors were found to bind to the same response element on OPN as the members of the NR3B family of orphan receptors do. Mutual repression was observed between the NR4A receptors and the NR3B receptors. This repression was shown to be dependent on the DNA-binding domains of both receptor families, but to result neither from the competition of DNA binding nor from the competition for coactivators. As the repression was dependent on the relative expression levels of the NR4As and NR3Bs, it seems likely that the ratio of the receptors mediates their activity on their response elements. Rapid induction of the NR4As in response to various stimuli and differential expression of the NR3Bs can effectively control the gene activation by the NR4A receptors. NR4A receptors can bind DNA as monomers, and Nurr1 and NGFI-B can form permissive heterodimers with the retinoid X receptor (RXR). Permissive heterodimers can be activated with RXR agonists, unlike non-permissive heterodimers, which are formed by RXR and retinoic acid receptor or thyroid hormone receptor (RAR and TR, respectively). Non-permissive heterodimers can only be activated by the agonists of the heterodimerizing partner. The mechanisms behind differential response to RXR agonists have remained unresolved. As there are no activating or repressing ligands for the NR4A receptors, it would be important to find out, how they are regulated. Permissiviness of Nurr1/RXR heterodimers was linked to the N-terminal part of Nurr1 ligand-binding domain. This region has previously been shown to mediate the interaction between NRs and corepressors. Non-permissive RAR and TR, permissive Nurr1 and NGFI-B, and RXR were overexpressed with corepressors silencing mediator for retinoic acid and thyroid hormone receptors (SMRT), and with nuclear receptor corepressor in several cell lines. Nurr1 and NGFI-B were found to be repressed by SMRT. The interaction of RXR heterodimers with corepressors was weak in permissive heterodimers and much stronger in non-permissive heterodimers. Non-permissive heterodimers also released corepressors only in response to the agonist of the heterodimeric partner of RXR. In the permissive Nurr1/RXR heterodimer, however, SMRT was released following the treatment with RXR agonists. Corepressor release in response to ligands was found to differentiate permissive heterodimers from non-permissive ones. Corepressors were thus connected to the regulation of NR4A functions. In summary, the studies presented here linked the NR4A family of orphan nuclear receptors to the regulation of osteoblasts. Nurr1 and NGFI-B were found to control the proliferation and apoptosis of preosteoblasts. The studies also demonstrated that cross-talk with the NR3B receptors controls the activity of these orphan receptors. The results clarified the mechanism of permissiviness of RXR-heterodimers. New information was obtained on the regulation and functions of NR4A receptors, for which the ligands are unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlamydia pneumoniae can cause acute respiratory infections including pneumonia. Repeated and persistent Chlamydia infections occur and persistent C. pneumoniae infection may have a role in the pathogenesis of atherosclerosis and coronary heart disease and may also contribute to the development of chronic inflammatory lung diseases like chronic obstructive pulmonary disease (COPD) and asthma. In this thesis in vitro models for persistent C. pneumonia infection were established in epithelial and monocyte/macrophage cell lines. Expression of host cell genes in the persistent C. pneumoniae infection model of epithelial cells was studied by microarray and RT-PCR. In the monocyte/macrophage infection model expression of selected C. pneumoniae genes were studied by RT-PCR and immunofluorescence microscopy. Chlamydia is able to modulate host cell gene expression and apoptosis of host cells, which may assist Chlamydia to evade the host cells' immune responses. This, in turn, may lead to extended survival of the organism inside epithelial cells and promote the development of persistent infection. To simulate persistent C. pneumoniae infection in vivo, we set up a persistent infection model exposing the HL cell cultures to IFN-gamma. When HL cell cultures were treated with moderate concentration of IFN-gamma, the replication of C. pneumoniae DNA was unaffected while differentiation into infectious elementary bodies (EB) was strongly inhibited. By transmission electron microscopy small atypical inclusions were identified in IFN-gamma treated cultures. No second cycle of infection was observed in cells exposed to IFN-gamma , whereas C. pneumoniae was able to undergo a second cycle of infection in unexposed HL cells. Although monocytic cells can naturally restrict chlamydial growth, IFN-gamma further reduced production of infectious C. pneumoniae in Mono Mac 6 cells. Under both studied conditions no second cycle of infection could be detected in monocytic cell line suggesting persistent infection in these cells. As a step toward understanding the role of host genes in the development and pathogenesis of persistent C. pneumoniae infection, modulation of host cell gene expression during IFN-gamma induced persistent infection was examined and compared to that seen during active C. pneumoniae infection or IFN-gamma treatment. Total RNA was collected at 6 to 150 h after infection of an epithelial cell line (HL) and analyzed by a cDNA array (available at that time) representing approximately 4000 human transcripts. In initial analysis 250 of the 4000 genes were identified as differentially expressed upon active and persistent chlamydial infection and IFN-gamma treatment. In persistent infection more potent up-regulation of many genes was observed in IFN-gamma induced persistent infection than in active infection or in IFN-gamma treated cell cultures. Also sustained up-regulation was observed for some genes. In addition, we could identify nine host cell genes whose transcription was specifically altered during the IFN-gamma induced persistent C. pneumoniae infection. Strongest up-regulation in persistent infection in relation to controls was identified for insulin like growth factor binding protein 6, interferon-stimulated protein 15 kDa, cyclin D1 and interleukin 7 receptor. These results suggest that during persistent infection, C. pneumoniae reprograms the host transcriptional machinery regulating a variety of cellular processes including adhesion, cell cycle regulation, growth and inflammatory response, all of which may play important roles in the pathogenesis of persistent C. pneumoniae infection. C. pneumoniae DNA can be detected in peripheral blood mononuclear cells indicating that the bacterium can also infect monocytic cells in vivo and thereby monocytes can assist the spread of infection from the lungs to other anatomical sites. Persistent infection established at these sites could promote inflammation and enhance pathology. Thus, the mononuclear cells are in a strategic position in the development of persistent infection. To investigate the intracellular replication and fate of C. pneumoniae in mononuclear cells we analyzed the transcription of 11 C. pneumoniae genes in Mono Mac 6 cells during infection by real time RT-PCR. Our results suggest that the transcriptional profile of the studied genes in monocytes is different from that seen in epithelial cells and that IFN-gamma has a less significant effect on C. pneumoniae transcription in monocytes. Furthermore, our study shows that type III secretion system (T3SS) related genes are transcribed and that Chlamydia possesses a functional T3SS during infection in monocytes. Since C. pneumoniae infection in monocytes has been implicated to have reduced antibiotic susceptibility, this creates opportunities for novel therapeutics targeting T3SS in the management of chlamydial infection in monocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The highly dynamic remodeling of the actin cytoskeleton is responsible for most motile and morphogenetic processes in all eukaryotic cells. In order to generate appropriate spatial and temporal movements, the actin dynamics must be under tight control of an array of actin binding proteins (ABPs). Many proteins have been shown to play a specific role in actin filament growth or disassembly of older filaments. Very little is known about the proteins affecting recycling i.e. the step where newly depolymerized actin monomers are funneled into new rounds of filament assembly. A central protein family involved in the regulation of actin turnover is cyclase-associated proteins (CAP, called Srv2 in budding yeast). This 50-60 kDa protein was first identified from yeast as a suppressor of an activated RAS-allele and a factor associated with adenylyl cyclase. The CAP proteins harbor N-terminal coiled-coil (cc) domain, originally identified as a site for adenylyl cyclase binding. In the N-terminal half is also a 14-3-3 like domain, which is followed by central proline-rich domains and the WH2 domain. In the C-terminal end locates the highly conserved ADP-G-actin binding domain. In this study, we identified two previously suggested but poorly characterized interaction partners for Srv2/CAP: profilin and ADF/cofilin. Profilins are small proteins (12-16 kDa) that bind ATP-actin monomers and promote the nucleotide exchange of actin. The profilin-ATP-actin complex can be directly targeted to the growth of the filament barbed ends capped by Ena/VASP or formins. ADF/cofilins are also small (13-19 kDa) and highly conserved actin binding proteins. They depolymerize ADP-actin monomers from filament pointed ends and remain bound to ADP-actin strongly inhibiting nucleotide exchange. We revealed that the ADP-actin-cofilin complex is able to directly interact with the 14-3-3 like domain at the N-terminal region of Srv2/CAP. The C-terminal high affinity ADP-actin binding site of Srv2/CAP competes with cofilin for an actin monomer. Cofilin can thus be released from Srv2/CAP for the subsequent round of depolymerization. We also revealed that profilin interacts with the first proline-rich region of Srv2/CAP and that the binding occurs simultaneously with ADP-actin binding to C-terminal domain of Srv2/CAP. Both profilin and Srv2/CAP can promote nucleotide exchange of actin monomer. Because profilin has much higher affinity to ATP-actin than Srv2/CAP, the ATP-actin-profilin complex is released for filament polymerization. While a disruption of cofilin binding in yeast Srv2/CAP produces a severe phenotype comparable to Srv2/CAP deletion, an impairment of profilin binding from Srv2/CAP results in much milder phenotype. This suggests that the interaction with cofilin is essential for the function of Srv2/CAP, whereas profilin can also promote its function without direct interaction with Srv2/CAP. We also show that two CAP isoforms with specific expression patterns are present in mice. CAP1 is the major isoform in most tissues, while CAP2 is predominantly expressed in muscles. Deletion of CAP1 from non-muscle cells results in severe actin phenotype accompanied with mislocalization of cofilin to cytoplasmic aggregates. Together these studies suggest that Srv2/CAP recycles actin monomers from cofilin to profilin and thus it plays a central role in actin dynamics in both yeast and mammalian cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thirty percent of 70-year-old women have osteoporosis; after age of 80 its prevalence is up to 70%. Postmenopausal women with osteoporosis seem to be at an increased risk for cardiovascular events, and deterioration of oral health, as shown by attachment loss of teeth, which is proportional to the severity of osteoporosis. Osteoporosis can be treated with many different medication, e.g. estrogen and alendronate. We randomized 90 elderly osteoporotic women (65-80 years of age) to receive hormone therapy (HT)(2mg E2+NETA), 10mg alendronate, and their combination for two years and compared their effects on bone mineral density (BMD) and turnover, two surrogate markers of the risk of cardiovascular diseases, C-reactive protein (CRP) and E-selectin, as well as oral health. The effect of HT on health-related quality of life (HRQoL) was studied in the population-based cohort of 1663 postmenopausal women (mean age 68 yr) (585 estrogen users and 1078 non-users). BMD was measured with dual-energy X-ray absorptiometry (DXA) at 0, 12 and 24 months. Urinary N-telopeptide (NTX) of type I collagen, a marker of bone resorption, and serum aminoterminal propeptide of human type I procollagen (PINP), a marker of bone formation, were measured every six months of treatment. Serum CRP and E-selectin, were measured at 0, 6, and 12 months. Dental, and periodontal conditions, and gingival crevicular fluid (GCF) matrix metalloproteinase (MMP)-8 levels were studied to evaluate the oral health status and for the mouth symptoms a structured questionnaire was used. The HRQoL was measured with 15D questionnaire. Lumbar spine BMD increased similarly in all treatment groups (6.8-8.4% and 9.1-11.2%). Only HT increased femoral neck BMD at both 12 (4.9%) and 24 months (5.8%), at the latter time point the HT group differed significantly from the other groups. HT reduced bone marker levels of NTX and PINP significantly less than other two groups.Oral HT significantly increased serum CRP level by 76.5% at 6 and by 47.1% (NS) at 12 months, and decreased serum E-selectin level by 24.3% and 30.0%. Alendronate had no effect on these surrogate markers. Alendronate caused a decrease in the resting salivary flow rate and tended to increase GCF MMP-8 levels. Otherwise, there was no effect on the parameters of oral health. HT improved the HRQoL of elderly women significantly on the dimensions of usual activities, vitality and sexual activity, but the overall improvement in HRQoL was neither statistically significant nor clinically important. In conclusion, bisphosphonates might be the first option to start the treatment of postmenopausal osteoporosis in the old age.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bone mass accrual and maintenance are regulated by a complex interplay between genetic and environmental factors. Recent studies have revealed an important role for the low-density lipoprotein receptor-related protein 5 (LRP5) in this process. The aim of this thesis study was to identify novel variants in the LRP5 gene and to further elucidate the association of LRP5 and its variants with various bone health related clinical characteristics. The results of our studies show that loss-of-function mutations in LRP5 cause severe osteoporosis not only in homozygous subjects but also in the carriers of these mutations, who have significantly reduced bone mineral density (BMD) and increased susceptibility to fractures. In addition, we demonstrated for the first time that a common polymorphic LRP5 variant (p.A1330V) was associated with reduced peak bone mass, an important determinant of BMD and osteoporosis in later life. The results from these two studies are concordant with results seen in other studies on LRP5 mutations and in association studies linking genetic variation in LRP5 with BMD and osteoporosis. Several rare LRP5 variants were identified in children with recurrent fractures. Sequencing and multiplex ligation-dependent probe amplification (MLPA) analyses revealed no disease-causing mutations or whole-exon deletions. Our findings from clinical assessments and family-based genotype-phenotype studies suggested that the rare LRP5 variants identified are not the definite cause of fractures in these children. Clinical assessments of our study subjects with LPR5 mutations revealed an unexpectedly high prevalence of impaired glucose tolerance and dyslipidaemia. Moreover, in subsequent studies we discovered that common polymorphic LRP5 variants are associated with unfavorable metabolic characteristics. Changes in lipid profile were already apparent in pre-pubertal children. These results, together with the findings from other studies, suggest an important role for LRP5 also in glucose and lipid metabolism. Our results underscore the important role of LRP5 not only in bone mass accrual and maintenance of skeletal health but also in glucose and lipid metabolism. The role of LRP5 in bone metabolism has long been studied, but further studies with larger study cohorts are still needed to evaluate the specific role of LRP5 variants as metabolic risk factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acute childhood osteomyelitis (OM), septic arthritis (SA), and their combination osteomyelitis with adjacent septic arthritis (OM+SA), are treated with long courses of antimicrobials and immediate surgery. We conducted a prospective multi-center randomized trial among Finnish children at age 3 months to 15 years in 1983-2005. According to the two-by-two factorial study design, children with OM or OM+SA received 20 or 30 days of antimicrobials, whereas those with SA were treated for 10 or 30 days. In addition, the whole series was randomized to be treated with clindamycin or a first-generation cephalosporin. Cases were included only if the causative agent was isolated. The treatment was instituted intravenously, but only for the first 2-4 days. Percutaneous aspiration was done to obtain a representative sample for bacteriology, but all other surgical intervention was kept at a minimum. A total of 265 patients fulfilled our strict inclusion criteria and were analyzed; 106 children had OM, 134 SA, and 25 OM+SA. In the OM group, one child in the long and one child in the short-term treatment group developed sequelae. One child with SA twice developed a late re-infection of the same joint, but the causative agents differed. Regarding surgery, diagnostic arthrocentesis or corticotomy was the only surgical procedure performed in most cases. Routine arthrotomy was not required even in hip arthritis. Serum C-reactive protein (CRP) proved to be a reliable laboratory index in the diagnosis and monitoring of osteoarticular infections. The recovery rate was similar regardless of whether clindamycin or a first-generation cephalosporin was used. We conclude that a course of 20 days of these well-absorbing antimicrobials is sufficient for OM or OM+SA, and 10 days for SA in most cases beyond the neonatal age. A short intravenous phase of only 2-5 days often suffices. CRP gives valuable information in monitoring the course of illness. Besides diagnostic aspiration, surgery should be reserved for selected cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is a malignant clonal blood disease that originates from a pluripotent hematopoietic stem cell. The cytogenetic hallmark of CML, the Philadelphia chromosome (Ph), is formed as a result of reciprocal translocation between chromosomes 9 and 22, which leads to a formation of a chimeric BCR-ABL fusion gene. The BCR-ABL protein is a constitutively active tyrosine kinase that changes the adhesion properties of cells, constitutively activates mitogenic signaling, enhances cell proliferation and reduces apoptosis. This results in leukemic growth and the clinical disease, CML. With the advent of targeted therapies against the BCR-ABL fusion protein, the treatment of CML has changed considerably during the recent decade. In this thesis, the clinical significance of different diagnostic methods and new prognostic factors in CML have been assessed. First, the association between two different methods for measuring CML disease burden (the RQ-PCR and the high mitotic index metaphase FISH) was assessed in bone marrow and peripheral blood samples. The correlation between positive RQ-PCR and metaphase FISH samples was high. However, RQ-PCR was more sensitive and yielded measurable transcripts in 40% of the samples that were negative by metaphase FISH. The study established a laboratory-specific conversion factor for setting up the International Scale when standardizing RQ-PCR measurements. Secondly, the amount of minimal residual disease (MRD) after allogeneic hematopoietic stem cell transplantation (alloHSCT) was determined. For this, metaphase FISH was done for the bone marrow samples of 102 CML patients. Most (68%), had no residual cells during the entire follow-up time. Some (12 %) patients had minor (<1%) MRD which decreased even further with time, whereas 19% had a progressive rise in MRD that exceeded 1% or had more than 1% residual cells when first detected. Residual cells did not become eradicated spontaneously if the frequency of Ph+ cells exceeded 1% during follow-up. Next, the impact of deletions in the derivative chromosome 9, was examined. Deletions were observed in 15% of the CML patients who later received alloHSCT. After alloHSCT, there was no difference in the total relapse rate in patients with or without deletions. Nor did the estimates of overall survival, transplant-related mortality, leukemia-free survival and relapse-free time show any difference between these groups. When conventional treatment regimens are used, the der(9) status could be an important criterion, in conjunction with other prognostic factors, when allogeneic transplantation is considered. The significance of der(9) deletions for patients treated with tyrosine kinase inhibitors is not clear and requires further investigation. In addition to the der(9) status of the patient, the significance of bone marrow lymphocytosis as a prognostic factor in CML was assessed. Bone marrow lymphocytosis during imatinib therapy was a positive predictive factor and heralded optimal response. When combined with major cytogenetic response at three months of treatment, bone marrow lymphocytosis predicted a prognostically important major molecular response at 18 months of imatinib treatment. Although the validation of these findings is warranted, the determination of the bone marrow lymphocyte count could be included in the evaluation of early response to imatinib treatment already now. Finally, BCR-ABL kinase domain mutations were studied in CML patients resistant against imatinib treatment. Point mutations detected in the kinase domain were the same as previously reported, but other sequence variants, e.g. deletions or exon splicing, were also found. The clinical significance of the other variations remains to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viruksien käyttö tuotekehityksen ja tutkimuksen vaatimien proteiinien tuottamiseen, syötävien rokotteiden kehittämiseen ja geeniterapiaan edustavat kasvavia biotekniikan sovellusalueita. Perunan A-virus (PVA) kuuluu potyviruksiin, joiden proteiinit tuotetaan aluksi yhtenä suurena molekyylinä, joka pilkotaan yksittäisiksi proteiineiksi viruksen itsensä tuottamilla entsyymeillä. Siten virusgenomiin lisätty vieras geeni käännetään proteiiniksi virusproteiinien mukana. Lopputuloksena kaikkia proteiineja tuotetaan kasvisoluissa samansuuruinen määrä. Lisäksi, viruksen proteiinikuoren koontimekanismi sallii perintöaineksen merkittävän lisäyksen ilman että viruksen tartutuskyky merkittävästi heikkenee. Koska virus monistuu ja leviää koko kasviin, jo melko pieni määrä kasveja riittää huomattavan proteiinimäärän tuottamiseen esimerkiksi säännösten mukaisessa kasvihuoneessa. Tämän työn tarkoituksena oli muuntaa PVA:n genomia siten, että virus soveltuisi yhden vieraan proteiinin tai useiden erilaisten proteiinien samanaikaiseen tuottamiseen kasveissa. Aluksi kokeiltiin viruksen replikaasia ja kuoriproteiinia koodaavien genomialueiden välistä kohtaa ja ihmisestä peräisi olevaa geeniä, joka tuotti S-COMT-entsyymiä (katekoli-O-metyylitransferaasi). Sen aktiivisuuden rajoittaminen auttaa Parkinsonintaudin hoidossa. Kasvissa tuotettua S-COMT:ia voitaisiin käyttää lääkekehityksessä estolääkkeiden testaukseen. Kahden viikon kuluttua tartutuksesta tupakan lehdissä oli entsymaattisesti aktiivista S-COMT:ia n. 1 % lehden liukoisista proteiineista. PVA:n P1-proteiinia koodaavalta alueelta oli paikannettu kohta, johon ehkä voitaisiin siirtää vieras geeni. Asia varmistettiin siirtämällä tähän kohtaan meduusan geeni, joka tuottaa UV-valossa vihreänä fluoresoivaa proteiinia (GFP). GFP-geeniä kantava PVA levisi kasvissa ja lisääntyi n. 30-50 %:iin viruksen normaalista pitoisuudesta. Koko kasvi fluoresoi vihreänä UV-valossa. Vieras geeni voidaan sijoittaa myös potyviruksen P1- ja HCpro-proteiineja koodaavien alueiden väliin. Samaan PVA-genomiin siirrettiin kolme geeniä, yksi kuhunkin kolmesta kloonauskohdasta: GFP-geeni P1:n sisälle, merivuokon lusiferaasigeeni P1/HCpro-kohtaan ja bakteerin beta-glukuronidaasigeeni (GUS) replikaasi/kuoriproteiini-kohtaan. Virusgenomin ja itse viruksen pituudet kasvoivat 38 %, mutta virus säilytti tartutuskykynsä. Se levisi kasveissa saavuttaen n. 15 % viruksen normaalista pitoisuudesta. Kaikki kolme vierasta proteiinia esiintyivät lehdissä aktiivisina.