14 resultados para Sympatric prey
em Helda - Digital Repository of University of Helsinki
Resumo:
Productivity is predicted to drive the ecological and evolutionary dynamics of predator-prey interaction through changes in resource allocation between different traits. However, resources are seldom constantly available and thus temporal variation in productivity could have considerable effect on the species' potential to evolve. To study this, three long-term microbial laboratory experiments were established where Serratia marcescens prey bacteria was exposed to predation of protist Tetrahymena thermophila in different prey resource environments. The consequences of prey resource availability for the ecological properties of the predator-prey system, such as trophic dynamics, stability, and virulence, were determined. The evolutionary changes in species traits and prey genetic diversity were measured. The prey defence evolved stronger in high productivity environment. Increased allocation to defence incurred cost in terms of reduced prey resource use ability, which probably constrained prey evolution by increasing the effect of resource competition. However, the magnitude of this trade-off diminished when measured in high resource concentrations. Predation selected for white, non-pigmented, highly defensive prey clones that produced predation resistant biofilm. The biofilm defence was also potentially accompanied with cytotoxicity for predators and could have been traded off with high motility. Evidence for the evolution of predators was also found in one experiment suggesting that co-evolutionary dynamics could affect the evolution and ecology of predator-prey interaction. Temporal variation in resource availability increased variation in predator densities leading to temporally fluctuating selection for prey defences and resource use ability. Temporal variation in resource availability was also able to constrain prey evolution when the allocation to defence incurred high cost. However, when the magnitude of prey trade-off was small and the resource turnover was periodically high, temporal variation facilitated the formation of predator resistant biofilm. The evolution of prey defence constrained the transfer of energy from basal to higher trophic levels, decreasing the strength of top-down regulation on prey community. Predation and temporal variation in productivity decreased the stability of populations and prey traits in general. However, predation-induced destabilization was less pronounced in the high productivity environment where the evolution of prey defence was stronger. In addition, evolution of prey defence weakened the environmental variation induced destabilization of predator population dynamics. Moreover, protozoan predation decreased the S. marcescens virulence in the insect host moth (Parasemia plantaginis) suggesting that species interactions outside the context of host-pathogen relationship could be important indirect drivers for the evolution of pathogenesis. This thesis demonstrates that rapid evolution can affect various ecological properties of predator-prey interaction. The effect of evolution on the ecological dynamics depended on the productivity of the environment, being most evident in the constant environments with high productivity.
Resumo:
Individuals face variable environmental conditions during their life. This may be due to migration, dispersion, environmental changes or, for example, annual variation in weather conditions. Genetic adaptation to a novel environment happens through natural selection. Phenotypic plasticity allows, however, a quick individual response to a new environment. Phenotypic plasticity may also be beneficial for individual if the environment is highly variable. For example, eggs are costly to produce. If the food conditions vary significantly between breeding seasons it is useful to be able to adjust the clutch and egg size according to the food abundance. In this thesis I use Ural owl vole system to study phenotypic plasticity and natural selection using a number of reproduction related traits. The Ural owl (Strix uralensis) is a long-lived and sedentary species. The reproduction and survival of the Ural owl, in fact their whole life, is tied to the dramatically fluctuating vole densities. Ural owls do not cause vole cycles but they have to adjust their behaviour to the rather predictable population fluctuations of these small mammals. Earlier work with this system has shown that Ural owl laying date and clutch size are plastic in relation to vole abundance. Further, individual laying date clutch size reaction norms have been shown to vary in the amount of plasticity. My work extends the knowledge of natural selection and phenotypic plasticity in traits related to reproduction. I show that egg size, timing of the onset of incubation and nest defense aggressiveness are plastic traits with fitness consequences for the Ural owl. Although egg size is in general thought to be a fixed characteristic of an individual, this highly heritable trait in the Ural owl is also remarkably plastic in relation to the changes in vole numbers, Ural owls are laying the largest eggs when their prey is most abundant. Timing of the onset of incubation is an individual-specific property and plastic in relation to clutch size. Timing of incubation is an important underlying cause for asynchronous hatching in birds. Asynchronous hatching is beneficial to offspring survival in Ural owl. Hence, timing of the onset of incubation may also be under natural selection. Ural owl females also adjust their nest defense aggressiveness according to the vole dynamics, being most aggressive in years when they produce the largest broods. Individual females show different levels of nest defense aggressiveness. Aggressiveness is positively correlated with the phenotypic plasticity of aggressiveness. As elevated nest defense aggressiveness is selected for, it may promote the plasticity of aggressive nest defense behaviour. All the studied traits are repeatable or heritable on individual level, and their expression is either directly or indirectly sensitive to changes in vole numbers. My work considers a number of important fitness-related traits showing phenotypic plasticity in all of them. Further, in two chapters I show that there is individual variation in the amount of plasticity exhibited. These findings on plasticity in reproduction related traits suggest that variable environments indeed promote plasticity.
Resumo:
The composition of the carnivore community influences the different forms of inter-specific interactions. Furthermore, inter-specific interactions of carnivores have important implications for intra-guild competition, epidemiology and strategies of species-specific population management. Zoonooses, such as rabies, are diseases that can be transmitted from wildlife to people. Knowing the ecological characteristics of the species helps us to choose the right preventive actions and to time them accurately. In this thesis, I have studied how raccoon dogs Nyctereutes procyonoides, European badgers Meles meles, red foxes Vulpes vulpes and domestic cats Felis silvestris catus act as members of carnivore community, and how these interactions relate to the transmission risk of rabies. In the study area, these species form a community of medium-sized and rather generalist predators. They live in the same areas, in spatially and temporally overlapping home ranges and use the same habitats and dens and even have similar diets. However, there is no direct evidence of competition. Shared dens point to good tolerance of other species. Numerous observations of animals moving in each other’s proximity give similar clues. However, overlapping home ranges and similar habitat preferences lead to frequent inter-specific contacts, which increase the risk of possible rabies transmission. Also, the new insight of habitat use gained by this study illustrates the similar favouring of deciduous forests and fields by these sympatric medium-sized carnivores, creating a basis for contact zones, i.e. risky habitats for rabies transmission and spread. This study is so far the only simultaneous radio tracking study of raccoon dogs, badgers, foxes and cats. These results give new insight of the interactions in the carnivore community, as well as of the behaviour of each individual species. Also, these results have significant implications for the planning of rabies control. In order to reach viable management decisions, not only one or two species should be taken into consideration, but the whole community. In particular, this changes the perspective to inter-specific contacts, animal densities, densities of individuals susceptible to diseases and the magnitude of preventive actions. Rabies should be considered as a multi-vector disease, at least in Finland and the Baltic states. It is of interest for disease management to be able to model an epizootic with local parameters to reflect the real situation and also to suite best the local management needs.
Resumo:
Long-term monitoring data collected from wild smolts of Atlantic salmon (Salmo salar) in the Simojoki river, northern Finland, were used in studying the relationships between the smolt size and age, smolt and postsmolt migration, environmental conditions and postsmolt survival. The onset of the smolt run was significantly dependent on the rising water temperature and decreasing discharge of the river in the spring. The mean length of smolts migrating early in the season was commonly higher and the mean age always older than among smolts migrating later. Many of the smolts migrating early in the season and almost all smolts migrating later had started their new growth in spring in the river before their sea entry. Among postsmolts, the time required for emigration from the estuary was dependent on the sea surface temperature (SST) off the river, being significantly shorter in years with warm than cold sea temperatures. After leaving the estuary, the postsmolts migrated southwards along the eastern coast of the northern Gulf of Bothnia, the geographical distribution of the tag recoveries coinciding with the warm thermal zone in spring in the coastal area. After arriving in the southern Gulf of Bothnia in late summer the postsmolts mostly migrated near the western coast, reaching the Baltic Main Basin in late autumn. Until the early 1990s there was only a weak positive association between smolt length and postsmolt survival. However, following a subsequent decrease in the mean smolt size, a significant positive dependence was observed between smolt size and the reported recapture rate of tagged salmon. The differences in recapture rates between smolts tagged during the first and second half of the annual migration season were insignificant, indicating that the seasonal variation in smolt size and age seem to be too small to affect survival. Among the climatic factors examined, the summer SST in the Gulf of Bothnia was most clearly related to the survival of the wild postsmolts. Postsmolt survival appeared to be highest in years when the SST in June in the Bothnian Bay varied between 9 and 12 ºC. In addition, the survival of wild postsmolts showed a significant positive dependence on the SST in July in the Bothnian Sea, but not on the abundance of the prey fish (0+ herring, Clupea harengus and sprat, Sprattus sprattus) in the Bothnian Sea and in the Baltic Main Basin. The results suggest, that if the incidence of extreme weather conditions were to increase due to climatic changes, it would probably reduce the postsmolt survival of wild salmon populations. For improving the performance of hatchery-reared smolts, it could be useful to examine opportunities to produce smolts that are in their smolt traits and abilities more similar to the wild smolts described in this thesis.
Resumo:
Habitat requirements of fish are most strict during the early life stages, and the quality and quantity of reproduction habitats lays the basis for fish production. A considerable number of fish species in the northern Baltic Sea reproduce in the shallow coastal areas, which are also the most heavily exploited parts of the brackish marine area. However, the coastal fish reproduction habitats in the northern Baltic Sea are poorly known. The studies presented in this thesis focused on the influence of environmental conditions on the distribution of coastal reproduction habitats of freshwater fish. They were conducted in vegetated littoral zone along an exposure and salinity gradient extending from the innermost bays to the outer archipelago on the south-western and southern coasts of Finland, in the northern Baltic Sea. Special emphasis was placed on reed-covered Phragmites australis shores, which form a dominant vegetation type in several coastal archipelago areas. The main aims of this research were to (1) develop and test new survey and mapping methods, (2) investigate the environmental requirements that govern the reproduction of freshwater fish in the coastal area and (3) survey, map and model the distribution of the reproduction habitats of pike (Esox lucius) and roach (Rutilus rutilus). The white plate and scoop method with a standardized sampling time and effort was demonstrated to be a functional method for sampling the early life stages of fish in dense vegetation and shallow water. Reed-covered shores were shown to form especially important reproduction habitats for several freshwater fish species, such as pike, roach, other cyprinids and burbot, in the northern Baltic Sea. The reproduction habitats of pike were limited to sheltered reed- and moss-covered shores of the inner and middle archipelago, where suitable zooplankton prey were available and the influence of the open sea was low. The reproduction habitats of roach were even more limited and roach reproduction was successful only in the very sheltered reed-covered shores of the innermost bay areas, where salinity remained low (< 4‰) during the spawning season due to freshwater inflow. After identifying the critical factors restricting the reproduction of pike and roach, the spatial distribution of their reproduction habitats was successfully mapped and modelled along the environmental gradients using only a few environmental predictor variables. Reproduction habitat maps are a valuable tool promoting the sustainable use and management of exploited coastal areas and helping to maintain the sustainability of fish populations. However, the large environmental gradients and the extensiveness of the archipelago zone in the northern Baltic Sea demand an especially high spatial resolution of the coastal predictor variables. Therefore, the current lack of accurate large-scale, high-resolution spatial data gathered at exactly the right time is a considerable limitation for predictive modelling of shallow coastal waters.
Resumo:
Predation is an important source of mortality for most aquatic animals. Thus, the ability to avoid being eaten brings substantial fitness benefits to individuals. Predator detection abilities and antipredator behaviour were examined in various planktivores, i.e. the littoral mysids Neomysis integer and Praunus flexuosus, three-spined stickleback Gasterosteus aculeatus larvae, pelagic mysids Mysis mixta and M. relicta, and the predatory cladoceran Cercopagis pengoi, with cues from their respective predators European perch Perca fluviatilis and Baltic herring Clupea harengus membras. The use of different aquatic macrophytes as predation refuges by the littoral planktivores was also examined. All pelagic planktivores and stickleback larvae were able to detect the presence of their predator by chemical cues alone. The littoral mysids N. integer and P. flexuosus responded only when chemical and visual predator cues were combined. The responses of stickleback larvae were stronger to the combined cues than the chemical cue alone. A common antipredator behaviour in all of the planktivores studied was decreased ingestion rate in response to predator cues. N. integer and stickleback larvae also decreased their swimming activity. Pelagic mysids and C. pengoi altered their prey selectivity patterns in response to predator cues. The effects of predator cues on the swarming behaviour of N. integer were examined. Swarming brings clear antipredator advantages to N. integer, since when they feed in a swarm, they do not significantly decrease their feeding rate. However, the swarming behaviour of N. integer was not affected by predation risk, but was instead a fixed strategy. Despite the presence or absence of predator cues, N. integer individuals attempted to associate with a swarm and preferred larger to smaller swarms. In studies with aquatic macrophytes, stickleback larvae and P. flexuosus utilized vegetation as a predation refuge, spending more time within vegetation when under predation threat. The two macroalgal species studied, bladderwrack Fucus vesiculosus and stonewort Chara tomentosa, were preferred by P. flexuosus, whereas Eurasian watermilfoil Myriophyllum spicatum was strongly avoided by N. integer and stickleback larvae. In fact, when in dense patches in aquaria, M. spicatum caused acute and high mortality (> 70%) in littoral mysids, but not in sticklebacks, whereas C. tomentosa and northern watermilfoil M. sibiricum did not. In contrast, only 2-4% mortality in N. integer was observed with intact and broken stems of M. spicatum in field experiments. The distribution of littoral mysids in different vegetations, however, suggests that N. integer avoids areas vegetated by M. spicatum.
Resumo:
Predation forms one of the main selective forces in nature and in a vast number of prey species the behavioural responses form the main way to avoid predation. World wide numerous captive breeding programs are used to produce fish and other animal species for conservational reintroductions. However, rearing animals in the absence of predators in captivity has been shown to weaken their predator avoidance skills and lead to behavioural divergence between wild and captive-bred populations. In my thesis I studied the effects of predator odour exposures on antipredator behavioural and physiological responses of captive reared Saimaa Arctic charr. This charr population is the most endangered fish population in Finland and a sample of the remaining population has been taken to captive breeding and used for an extensive reintroduction program. Lowered responsiveness to predators is probably one of the major reasons for the poor survival probability of the charr after release into the wild. The main aims of my thesis were to explore the reasons for behavioural phenotypic variation in this charr population and whether naïve charr young could be trained to recognise their natural predators. The predator species in my thesis were burbot (Lota lota) and pikeperch (Sander lucioperca). In my thesis I showed that the captive-bred charr responded to chemical cues from burbot and pikeperch, but the magnitude of responses was linked to the predator species. The burbot odour increased the spatial odour avoidance of the charr young. On the other hand, in the pikeperch treatment charr reduced their relative swimming activity and tended to show more freezing behaviour relative to the burbot treatment. It seems evident that these different responses are related to the different hunting tactics of predator species. Furthermore, I detected wide between-family differences in antipredator responsiveness (i.e. inherited variation in antipredator behaviours) in this captive stock. Detected differences were greater in the response towards burbot than towards pikeperch. These results, in addition to predator-specific antipredator responses, suggest that there is a clear inherited component in antipredator responsiveness in Saimaa charr population and that the detected inherited differences could explain a part of the behavioural phenotypic variation in this population. In my thesis I also found out that both social learning and direct exposure to live predators enhance the antipredator responsiveness of charr young. In addition, I obtained indications that predator odour exposures (i.e. life-skills training) in alevin and fry stages can fine-tune the innate antipredator responsiveness of charr. Thus, all these methods have the potential to enhance the innate antipredator responsiveness of naïve charr young, possibly also improving the post-release survival of these trained individuals in the wild. However, the next logical phase would be to carry out large scale survival studies in the wild to test this hypothesis. Finally, the results of my thesis emphasize that possible long-term life-skills training methods should take into account not only the behavioural but also the physiological effects of training.
Resumo:
Social behaviour affects dispersal of animals and is an important modifier of genetic population structures. The female sex is often philopatric, which maintains coancestry within the breeding groups and promotes cooperative behaviours. This enables also inclusive fitness returns from altruism and explains why some individuals sacrifice personal reproduction for the good of others in social insects such as ants. However, reduced dispersal and population substructuring at the level of colonies may also entail inbreeding, loss of genetic diversity, and vulnerability. In addition, the most vulnerable ants are species that are evolved to parasitize colonies of other ants, and which compromise between abilities to disperse and the efficiency to parasitize the host. On the other hand, certain social organisations of ant colonies may facilitate a species to disperse outside its natural range and become a pest. Altogether, knowledge on genetic structuring of ant populations, as well as the evolution of their life histories can contribute to conservation biology and population management. The aim of this thesis was to investigate population structures and phylogenetic evolution of the ant Plagiolepis pygmaea and its two obligatory, workerless social parasites (inquilines) P. xene and P. grassei with genetic markers and DNA sequence data. The results support the general assumption that populations of inquiline parasites are highly fragmented and genetically vulnerable. Comparison of the two parasites suggests that differences in their relative abundance may follow from their interaction with the host, i.e. how well the species is adapted to reproduce in the host colonies. The results also indicate that the most recent free living ancestor to these two parasite species is their common host. This is considered to provide evidence for the controversial issue of sympatric speciation. Further, given that the level of adaptations to parasitic life history depends on the evolutionary time since the free-living ancestor, the results establish a link between species rarity and its evolutionary age. The populations of the host species P. pygmaea displayed significantly reduced dispersal both among the females (queens) and males, and high levels of inbreeding which may enhance worker altruism. In addition, the queens were found to mate with multiple males. Given the high relatedness between the queens and their mates, this occurs probably for non-genetic reasons, e.g. without benefits associated in genetically more diverse offspring. The results hence caution that the contribution of non-genetic factors to the prevailing mating patterns and genetic population structures should not be underestimated.
Resumo:
In aquatic systems, the ability of both the predator and prey to detect each other may be impaired by turbidity. This could lead to significant changes in the trophic interactions in the food web of lakes. Most fish use their vision for predation and the location of prey can be highly influenced by light level and clarity of the water environment. Turbidity is an optical property of water that causes light to be scattered and absorbed by particles and molecules. Turbidity is highly variable in lakes, due to seasonal changes in suspended sediments, algal blooms and wind-driven suspension of sediments especially in shallow waters. There is evidence that human activity has increased erosion leading to increased turbidity in aquatic systems. Turbidity could also play a significant role in distribution of fish. Turbidity could act as a cover for small fish and reduce predation risk. Diel horizontal migration by fish is common in shallow lakes and is considered as consequences of either optimal foraging behaviour for food or as a trade-off between foraging and predator avoidance. In turbid lakes, diel horizontal migration patterns could differ since turbidity can act as a refuge itself and affect the predator-prey interactions. Laboratory experiments were conducted with perch (Perca fluviatilis L.) and white bream (Abramis björkna (L.)) to clarify the effects of turbidity on their feeding. Additionally to clarify the effects of turbidity on predator preying on different types of prey, pikeperch larvae (Sander lucioperca (L.)), Daphnia pulex (Leydig), Sida crystallina (O.F. Müller), and Chaoborus flavicans (Meigen) were used as prey in different experiments. To clarify the role of turbidity in distribution and diel horizontal migration of perch, roach (Rutilus rutilus (L.)) and white bream, field studies were conducted in shallow turbid lakes. A clear and a turbid shallow lake were compared to investigate distribution of perch and roach in these two lakes in a 15-year study period. Feeding efficiency of perch and white bream was not significantly affected with increasing clay turbidity up to 50 NTU. The perch experiments with pikeperch larvae suggested that clay turbidity could act as a refuge especially at turbidity levels higher than 50 NTU. Perch experiments with different prey types suggested that pikeperch larvae probably use turbidity as a refuge better compared to Daphnia. Increase in turbidity probably has stronger affect on perch predating on plant-attached prey. The main findings of the thesis show that turbidity can play a significant role in distribution of fish. Perch and roach could use turbidity as refuge when macrophytes disappear while small perch may also use high turbidity as refuge when macrophytes are present. Floating-leaved macrophytes are probably good refuges for small fish in clay-turbid lakes and provide a certain level of turbidity and not too complex structure for refuge. The results give light to the predator-prey interactions in turbid environments. Turbidity of water should be taken in to account when studying the diel horizontal migrations and distribution of fish in shallow lakes.
Resumo:
Sediment resuspension, the return of the bottom material into the water column, is an important process that can have various effects on a lake ecosystem. Resuspension caused by wind-induced wave disturbance, currents, turbulent fluctuations and bioturbation affects water quality characteristics such as turbidity, light conditions, and concentrations of suspended solids (SS) and nutrients. Resuspension-mediated increase in turbidity may favour the dominance of phytoplankton over macrophytes. The predator-prey interactions contributing to the trophic state of a lake may also be influenced by increasing turbidity. Directly, the trophic state of a lake can be influenced by the effect of sediment resuspension on nutrient cycling. Resuspension enhances especially the cycling of phosphorus by bringing the sedimentary nutrients back into the water column and may thereby induce switches between phosphorus and nitrogen limitation. The contribution of sediment resuspension to gross sedimentation, turbidity, and concentration of SS and nutrients was studied in a small, deep lake as well as in a multibasin lake with deep and shallow areas. The effect of ice cover on sediment resuspension and thereby on phosphorus concentrations was also studied. The rates of gross sedimentation and resuspen¬sion were estimated with sediment traps and the associations between SS and nutrients were considered. Sediment resuspension, caused by wind activity, comprised most of the gross sedimenta¬tion and strongly contributed to the concentration of SS and turbidity in the lakes studied. Additionally, via the influence on SS, resuspension affected the concentration of total phosphorus (TP) and soluble reactive phosphorus (SRP), as well as the total nitrogen to total phosphorus (TN:TP) ratio. Although contrasting results concerning the dependence between the SS and SRP concentrations were observed, it could be concluded that sediment resuspension during strong algal blooms (pH > 9) led to aerobic release of P. The main findings of this thesis were that in the course of the growing season, sediment resuspension coupled with phytoplankton succession led to liberation of P from resuspended particles, which in turn resulted in high TP concentrations and low TN:TP ratios. This development was likely a cause of strong cyanobacterial blooms in midsummer.
Resumo:
In lake ecosystems, both fish and invertebrate predators have dramatic effects on their prey communities. Fish predation selects large cladocerans while invertebrate predators prefer prey of smaller size. Since invertebrate predators are the preferred food items for fish, their occurrence at high densities is often connected with the absence or low number of fish. It is generally believed that invertebrate predators can play a significant role only if the density of planktivorous fish is low. However, in eutrophic clay-turbid Lake Hiidenvesi (southern Finland), a dense population of predatory Chaoborus flavicans larvae coexists with an abundant fish population. The population covers the stratifying area of the lake and attains a maximum population density of 23000 ind. m-2. This thesis aims to clarify the effects of Chaoborus flavicans on the zooplankton community and the environmental factors facilitating the coexistence of fish and invertebrate predators. In the stratifying area of Lake Hiidenvesi, the seasonal succession of cladocerans was exceptional. The spring biomass peak of cladocerans was missing and the highest biomass occurred in midsummer. In early summer, the consumption rate by chaoborids clearly exceeded the production rate of cladocerans and each year the biomass peak of cladocerans coincided with the minimum chaoborid density. In contrast, consumption by fish was very low and each study year cladocerans attained maximum biomass simultaneously with the highest consumption by smelt (Osmerus eperlanus). The results indicated that Chaoborus flavicans was the main predator of cladocerans in the stratifying area of Lake Hiidenvesi. The clay turbidity strongly contributed to the coexistence of chaoborids and smelt at high densities. Turbidity exceeding 30 NTU combined with light intensity below 0.1 μE m-2 s-1provides an efficient daytime refuge for chaoborids, but turbidity alone is not an adequate refuge unless combined with low light intensity. In the non-stratifying shallow basins of Lake Hiidenvesi, light intensity exceeds this level during summer days at the bottom of the lake, preventing Chaoborus forming a dense population in the shallow parts of the lake. Chaoborus can be successful particularly in deep, clay-turbid lakes where they can remain high in the water column close to their epilimnetic prey. Suspended clay alters the trophic interactions by weakening the link between fish and Chaoborus, which in turn strengthens the effect of Chaoborus predation on crustacean zooplankton. Since food web management largely relies on manipulations of fish stocks and the cascading effects of such actions, the validity of the method in deep clay-turbid lakes may be questioned.
Resumo:
Species identification forms the basis for understanding the diversity of the living world, but it is also a prerequisite for understanding many evolutionary patterns and processes. The most promising approach for correctly delimiting and identifying species is to integrate many types of information in the same study. Our aim was to test how cuticular hydro- carbons, traditional morphometrics, genetic polymorphisms in nuclear markers (allozymes and DNA microsatellites) and DNA barcoding (partial mitochondrial COI gene) perform in delimiting species. As an example, we used two closely related Formica ants, F. fusca and F. lemani, sampled from a sympatric population in the northern part of their distribu- tion. Morphological characters vary and overlap in different parts of their distribution areas, but cuticular hydrocarbons include a strong taxonomic signal and our aim is to test the degree to which morphological and genetic data correspond to the chemical data. In the morphological analysis, species were best separated by the combined number of hairs on pro- notum and mesonotum, but individual workers overlapped in hair numbers, as previously noted by several authors. Nests of the two species were separated but not clustered according to species in a Principal Component Analysis made on nuclear genetic data. However, model-based Bayesian clustering resulted in perfect separation of the species and gave no indication of hybridization. Furthermore, F. lemani and F. fusca did not share any mitochondrial haplotypes, and the species were perfectly separated in a phylogenetic tree. We conclude that F. fusca and F. lemani are valid species that can be separated in our study area relatively well with all methods employed. However, the unusually small genetic differen- tiation in nuclear markers (FST = 0.12) shows that they are closely related, and occasional hybridization between F. fusca and F. lemani cannot be ruled out.