22 resultados para Statistical variance
em Helda - Digital Repository of University of Helsinki
Resumo:
The goal of this research was to establish the necessary conditions under which individuals are prepared to commit themselves to quality assurance work in the organisation of a Polytechnic. The conditions were studied using four main concepts: awareness of quality, commitment to the organisation, leadership and work welfare. First, individuals were asked to describe these four concepts. Then, relationships between the concepts were analysed in order to establish the conditions for the commitment of an individual towards quality assurance work (QA). The study group comprised the entire personnel of Helsinki Polytechnic, of which 341 (44.5%) individuals participated. Mixed methods were used as the methodological base. A questionnaire and interviews were used as the research methods. The data from the interviews were used for the validation of the results, as well as for completing the analysis. The results of these interviews and analyses were integrated using the concurrent nested design method. In addition, the questionnaire was used to separately analyse the impressions and meanings of the awareness of quality and leadership, because, according to the pre-understanding, impressions of phenomena expressed in terms of reality have an influence on the commitment to QA. In addition to statistical figures, principal component analysis was used as a description method. For comparisons between groups, one way variance analysis and effect size analysis were used. For explaining the analysis methods, forward regression analysis and structural modelling were applied. As a result of the research it was found that 51% of the conditions necessary for a commitment to QA were explained by an individual’s experience/belief that QA was a method of development, that QA was possible to participate in and that the meaning of quality included both product and process qualities. If analysed separately, other main concepts (commitment to the organisation, leadership and work welfare) played only a small part in explaining an individual’s commitment. In the context of this research, a structural path model of the main concepts was built. In the model, the concepts were interconnected by paths created as a result of a literature search covering the main concepts, as well as a result of an analysis of the empirical material of this thesis work. The path model explained 46% of the necessary conditions under which individuals are prepared to commit themselves to QA. The most important path for achieving a commitment stemmed from product and system quality emanating from the new goals of the Polytechnic, moved through the individual’s experience that QA is a method of the total development of quality and ended in a commitment to QA. The second most important path stemmed from the individual’s experience of belonging to a supportive work community, moved through the supportive value of the job and through affective commitment to the organisation and ended in a commitment to QA. The third path stemmed from an individual’s experiences in participating in QA, moved through collective system quality and through these to the supportive value of the job to affective commitment to the organisation and ended in a commitment to QA. The final path in the path model stemmed from leadership by empowerment, moved through collective system quality, the supportive value of the job and an affective commitment to the organisation, and again, ended in a commitment to QA. As a result of the research, it was found that the individual’s functional department was an important factor in explaining the differences between groups. Therefore, it was found that understanding the processing of part cultures in the organisation is important when developing QA. Likewise, learning-teaching paradigms proved to be a differentiating factor. Individuals thinking according to the humanistic-constructivistic paradigm showed more commitment to QA than technological-rational thinkers. Also, it was proved that the QA training program did not increase commitment, as the path model demonstrated that those who participated in training showed 34% commitment, whereas those who did not showed 55% commitment. As a summary of the results it can be said that the necessary conditions under which individuals are prepared to commit themselves to QA cannot be treated in a reductionistic way. Instead, the conditions must be treated as one totality, with all the main concepts interacting simultaneously. Also, the theoretical framework of quality must include its dynamic aspect, which means the development of the work of the individual and learning through auditing. In addition, this dynamism includes the reflection of the paradigm of the functions of the individual as well as that of all parts of the organisation. It is important to understand and manage the various ways of thinking and the cultural differences produced by the fragmentation of the organisation. Finally, it seems possible that the path model can be generalised for use in any organisation development project where the personnel should be committed.
Resumo:
This academic work begins with a compact presentation of the general background to the study, which also includes an autobiography for the interest in this research. The presentation provides readers who know little of the topic of this research and of the structure of the educational system as well as of the value given to education in Nigeria. It further concentrates on the dynamic interplay of the effect of academic and professional qualification and teachers' job effectiveness in secondary schools in Nigeria in particular, and in Africa in general. The aim of this study is to produce a systematic analysis and rich theoretical and empirical description of teachers' teaching competencies. The theoretical part comprises a comprehensive literature review that focuses on research conducted in the areas of academic and professional qualification and teachers' job effectiveness, teaching competencies, and the role of teacher education with particular emphasis on school effectiveness and improvement. This research benefits greatly from the functionalist conception of education, which is built upon two emphases: the application of the scientific method to the objective social world, and the use of an analogy between the individual 'organism' and 'society'. To this end, it offers us an opportunity to define terms systematically and to view problems as always being interrelated with other components of society. The empirical part involves describing and interpreting what educational objectives can be achieved with the help of teachers' teaching competencies in close connection to educational planning, teacher training and development, and achieving them without waste. The data used in this study were collected between 2002 and 2003 from teachers, principals, supervisors of education from the Ministry of Education and Post Primary Schools Board in the Rivers State of Nigeria (N=300). The data were collected from interviews, documents, observation, and questionnaires and were analyzed using both qualitative and quantitative methods to strengthen the validity of the findings. The data collected were analyzed to answer the specific research questions and hypotheses posited in this study. The data analysis involved the use of multiple statistical procedures: Percentages Mean Point Value, T-test of Significance, One-Way Analysis of Variance (ANOVA), and Cross Tabulation. The results obtained from the data analysis show that teachers require professional knowledge and professional teaching skills, as well as a broad base of general knowledge (e.g., morality, service, cultural capital, institutional survey). Above all, in order to carry out instructional processes effectively, teachers should be both academically and professionally trained. This study revealed that teachers are not however expected to have an extraordinary memory, but rather looked upon as persons capable of thinking in the right direction. This study may provide a solution to the problem of teacher education and school effectiveness in Nigeria. For this reason, I offer this treatise to anyone seriously committed in improving schools in developing countries in general and in Nigeria in particular to improve the lives of all its citizens. In particular, I write this to encourage educational planners, education policy makers, curriculum developers, principals, teachers, and students of education interested in empirical information and methods to conceptualize the issue this study has raised and to provide them with useful suggestions to help them improve secondary schooling in Nigeria. Though, multiple audiences exist for any text. For this reason, I trust that the academic community will find this piece of work a useful addition to the existing literature on school effectiveness and school improvement. Through integrating concepts from a number of disciplines, I aim to describe as holistic a representation as space could allow of the components of school effectiveness and quality improvement. A new perspective on teachers' professional competencies, which not only take into consideration the unique characteristics of the variables used in this study, but also recommend their environmental and cultural derivation. In addition, researchers should focus their attention on the ways in which both professional and non-professional teachers construct and apply their methodological competencies, such as their grouping procedures and behaviors to the schooling of students. Keywords: Professional Training, Academic Training, Professionally Qualified, Academically Qualified, Professional Qualification, Academic Qualification, Job Effectiveness, Job Efficiency, Educational Planning, Teacher Training and Development, Nigeria.
Resumo:
The aim of this study was to find out how immersion students experience immersion education, how they feel about the implementation of immersion education methods and what role immersion plays in immersion students’ lives outside the school context. In addition, the influence of sex, grade level, school and type of immersion education on students’ perceptions was studied. The population included all students at the lower secondary level in Helsinki who participated in Swedish immersion education during 2002–2003. The sample consisted of 128 students who represented two different forms of immersion: 47% of the students had previously participated in early total immersion while 53 % of the students had taken part in early partial immersion. The data were gathered through a questionnaire and interviews. All 128 students answered the questionnaire, and 10 students were chosen to focus interviews through purposive sampling. In addition, students’ parents were invited to fill in a questionnaire where students’ background information was requested. The data were collected during the spring of 2003. Principal Component Analysis and one-way variance analysis were used as statistical analysis methods. Also frequencies, average, correlations and cross tabs were studied. In the PCA a right-angled varimax-rotation was performed separately to every thematic entity that arose from the theoretical background. Sum variables were formed from the Principal Components by summing up all the items that received over .400 charges for the specific Principal Component. Significance testing of the mean was performed with F and t-tests. Results indicate that immersion students in lower secondary school experience immersion quite diversely as a whole. Students are satisfied with the fact that they are in the immersion class but not with the amount of teaching in Swedish. Students feel it is very important and useful to learn Swedish bearing in mind their future studies and working life. The students estimate their language skills to be very high. Yet they prefer using Finnish during classes. The fact that teachers use Swedish does not considerably affect how well the students learn the factual content in various subjects, especially if the student knows Swedish well. Theoretical subjects seemed to cause most problems. Swedish played only a very small part in students’ lives outside the school context and it was used merely when travelling abroad and in different kinds of guiding situations. Unless the students were talked to in Swedish, they kept on speaking Finnish. When asked about students’ experiences no statistically significant differences between sexes were found in this study. On the contrary, in some cases their grade level but especially their school and form of immersion had clear statistically significant differences on students’ perceptions.
Resumo:
The objective of this study was to find factors that could predict educational dropout. Dropout risk was assessed against pupil’s cognitive competence, success in school, and personal beliefs regarding self and parents, while taking into account the pupil’s background and gender. Based on earlier research, an assumption was made that a pupil’s gender, success in school, and parent’s education would be related with dropping out. This study is part of a project funded by the Academy of Finland and led by Professor Jarkko Hautamäki. The project aims to use longitudinal study to assess the development of pupils’ skills in learning to learn. The target group of this study consisted all Finnish speaking ninth graders of a municipality in Southern Finland. There were in total 1534 pupils, of which 809 were girls and 725 boys. The assessment of learning to learn skills was performed about ninth graders in spring 2004. “Opiopi” test material was used in the assessment, consisting of cognitive tests and questions measuring beliefs. At the same time, pupils’ background information was collected together with their self-reported average grade of all school subjects. During spring 2009, the pupils’ joint application data from years 2004 and 2005 was collected from the Finnish joint application registers. The data were analyzed using quantitative methods assisted by the SPSS for Windows computer software. Analysis was conducted through statistical indices, differences in grade averages, multilevel model, multivariate analysis of variance, and logistic regression analysis. Based on earlier research, dropouts were defined as pupils that had not been admitted to or had not applied to second degree education under the joint application system. Using this definition, 157 students in the target group were classified as dropouts (10 % of the target group): 88 girls and 69 boys. The study showed that the school does not affect the drop-out risk but the school class explains 7,5 % of variation in dropout risk. Among girls, dropping out is predicted by a poor average grade, a lack of beliefs supporting learning, and an unrealistic primary choice in joint application system compared to one’s success in school. Among boys, a poor average grade, unrealistic choices in joint application system, and the belief of parent’s low appreciation of education were related to dropout risk. Keywords educational exclusion, school dropout, success in school, comprehensive school, learning to learn
Resumo:
In genetic epidemiology, population-based disease registries are commonly used to collect genotype or other risk factor information concerning affected subjects and their relatives. This work presents two new approaches for the statistical inference of ascertained data: a conditional and full likelihood approaches for the disease with variable age at onset phenotype using familial data obtained from population-based registry of incident cases. The aim is to obtain statistically reliable estimates of the general population parameters. The statistical analysis of familial data with variable age at onset becomes more complicated when some of the study subjects are non-susceptible, that is to say these subjects never get the disease. A statistical model for a variable age at onset with long-term survivors is proposed for studies of familial aggregation, using latent variable approach, as well as for prospective studies of genetic association studies with candidate genes. In addition, we explore the possibility of a genetic explanation of the observed increase in the incidence of Type 1 diabetes (T1D) in Finland in recent decades and the hypothesis of non-Mendelian transmission of T1D associated genes. Both classical and Bayesian statistical inference were used in the modelling and estimation. Despite the fact that this work contains five studies with different statistical models, they all concern data obtained from nationwide registries of T1D and genetics of T1D. In the analyses of T1D data, non-Mendelian transmission of T1D susceptibility alleles was not observed. In addition, non-Mendelian transmission of T1D susceptibility genes did not make a plausible explanation for the increase in T1D incidence in Finland. Instead, the Human Leucocyte Antigen associations with T1D were confirmed in the population-based analysis, which combines T1D registry information, reference sample of healthy subjects and birth cohort information of the Finnish population. Finally, a substantial familial variation in the susceptibility of T1D nephropathy was observed. The presented studies show the benefits of sophisticated statistical modelling to explore risk factors for complex diseases.
Resumo:
Human growth and attained height are determined by a combination of genetic and environmental effects and in modern Western societies > 80% of the observed variation in height is determined by genetic factors. Height is a fundamental human trait that is associated with many socioeconomic and psychosocial factors and health measures, however little is known of the identity of the specific genes that influence height variation in the general population. This thesis work aimed to identify the genetic variants that influence height in the general population by genome-wide linkage analysis utilizing large family samples. The study focused on analysis of three separate sets of families consisting of: 1) 1,417 individuals from 277 Finnish families (FinnHeight), 2) 8,450 individuals from 3,817 families from Australia and Europe (EUHeight) and 3) 9,306 individuals from 3,302 families from the United States (USHeight). The most significant finding in this study was found in the Finnish family sample where we a locus in the chromosomal region 1p21 was linked to adult height. Several regions showed evidence for linkage in the Australian, European and US families with 8q21 and 15q25 being the most significant. The region on 1p21 was followed up with further studies and we were able to show that the collagen 11-alpha-1 gene (COL11A1) residing at this location was associated with adult height. This association was also confirmed in an independent Finnish population cohort (Health 2000) consisting of 6,542 individuals. From this population sample, we estimated that homozygous males and females for this gene variant were 1.1 and 0.6 cm taller than the respective controls. In this thesis work we identified a gene variant in the COL11A1 gene that influences human height, although this variant alone explains only 0.1% of height variation in the Finnish population. We also demonstrated in this study that special stratification strategies such as performing sex-limited analyses, focusing on dizygous twin pairs, analyzing ethnic groups within a population separately and utilizing homogenous populations such as the Finns can improve the statistical power of finding QTL significantly. Also, we concluded from the results of this study that even though genetic effects explain a great proportion of height variance, it is likely that there are tens or even hundreds of genes with small individual effects underlying the genetic architecture of height.
Resumo:
Bacteria play an important role in many ecological systems. The molecular characterization of bacteria using either cultivation-dependent or cultivation-independent methods reveals the large scale of bacterial diversity in natural communities, and the vastness of subpopulations within a species or genus. Understanding how bacterial diversity varies across different environments and also within populations should provide insights into many important questions of bacterial evolution and population dynamics. This thesis presents novel statistical methods for analyzing bacterial diversity using widely employed molecular fingerprinting techniques. The first objective of this thesis was to develop Bayesian clustering models to identify bacterial population structures. Bacterial isolates were identified using multilous sequence typing (MLST), and Bayesian clustering models were used to explore the evolutionary relationships among isolates. Our method involves the inference of genetic population structures via an unsupervised clustering framework where the dependence between loci is represented using graphical models. The population dynamics that generate such a population stratification were investigated using a stochastic model, in which homologous recombination between subpopulations can be quantified within a gene flow network. The second part of the thesis focuses on cluster analysis of community compositional data produced by two different cultivation-independent analyses: terminal restriction fragment length polymorphism (T-RFLP) analysis, and fatty acid methyl ester (FAME) analysis. The cluster analysis aims to group bacterial communities that are similar in composition, which is an important step for understanding the overall influences of environmental and ecological perturbations on bacterial diversity. A common feature of T-RFLP and FAME data is zero-inflation, which indicates that the observation of a zero value is much more frequent than would be expected, for example, from a Poisson distribution in the discrete case, or a Gaussian distribution in the continuous case. We provided two strategies for modeling zero-inflation in the clustering framework, which were validated by both synthetic and empirical complex data sets. We show in the thesis that our model that takes into account dependencies between loci in MLST data can produce better clustering results than those methods which assume independent loci. Furthermore, computer algorithms that are efficient in analyzing large scale data were adopted for meeting the increasing computational need. Our method that detects homologous recombination in subpopulations may provide a theoretical criterion for defining bacterial species. The clustering of bacterial community data include T-RFLP and FAME provides an initial effort for discovering the evolutionary dynamics that structure and maintain bacterial diversity in the natural environment.
Resumo:
In this Thesis, we develop theory and methods for computational data analysis. The problems in data analysis are approached from three perspectives: statistical learning theory, the Bayesian framework, and the information-theoretic minimum description length (MDL) principle. Contributions in statistical learning theory address the possibility of generalization to unseen cases, and regression analysis with partially observed data with an application to mobile device positioning. In the second part of the Thesis, we discuss so called Bayesian network classifiers, and show that they are closely related to logistic regression models. In the final part, we apply the MDL principle to tracing the history of old manuscripts, and to noise reduction in digital signals.
Resumo:
Population dynamics are generally viewed as the result of intrinsic (purely density dependent) and extrinsic (environmental) processes. Both components, and potential interactions between those two, have to be modelled in order to understand and predict dynamics of natural populations; a topic that is of great importance in population management and conservation. This thesis focuses on modelling environmental effects in population dynamics and how effects of potentially relevant environmental variables can be statistically identified and quantified from time series data. Chapter I presents some useful models of multiplicative environmental effects for unstructured density dependent populations. The presented models can be written as standard multiple regression models that are easy to fit to data. Chapters II IV constitute empirical studies that statistically model environmental effects on population dynamics of several migratory bird species with different life history characteristics and migration strategies. In Chapter II, spruce cone crops are found to have a strong positive effect on the population growth of the great spotted woodpecker (Dendrocopos major), while cone crops of pine another important food resource for the species do not effectively explain population growth. The study compares rate- and ratio-dependent effects of cone availability, using state-space models that distinguish between process and observation error in the time series data. Chapter III shows how drought, in combination with settling behaviour during migration, produces asymmetric spatially synchronous patterns of population dynamics in North American ducks (genus Anas). Chapter IV investigates the dynamics of a Finnish population of skylark (Alauda arvensis), and point out effects of rainfall and habitat quality on population growth. Because the skylark time series and some of the environmental variables included show strong positive autocorrelation, the statistical significances are calculated using a Monte Carlo method, where random autocorrelated time series are generated. Chapter V is a simulation-based study, showing that ignoring observation error in analyses of population time series data can bias the estimated effects and measures of uncertainty, if the environmental variables are autocorrelated. It is concluded that the use of state-space models is an effective way to reach more accurate results. In summary, there are several biological assumptions and methodological issues that can affect the inferential outcome when estimating environmental effects from time series data, and that therefore need special attention. The functional form of the environmental effects and potential interactions between environment and population density are important to deal with. Other issues that should be considered are assumptions about density dependent regulation, modelling potential observation error, and when needed, accounting for spatial and/or temporal autocorrelation.
Resumo:
An efficient and statistically robust solution for the identification of asteroids among numerous sets of astrometry is presented. In particular, numerical methods have been developed for the short-term identification of asteroids at discovery, and for the long-term identification of scarcely observed asteroids over apparitions, a task which has been lacking a robust method until now. The methods are based on the solid foundation of statistical orbital inversion properly taking into account the observational uncertainties, which allows for the detection of practically all correct identifications. Through the use of dimensionality-reduction techniques and efficient data structures, the exact methods have a loglinear, that is, O(nlog(n)), computational complexity, where n is the number of included observation sets. The methods developed are thus suitable for future large-scale surveys which anticipate a substantial increase in the astrometric data rate. Due to the discontinuous nature of asteroid astrometry, separate sets of astrometry must be linked to a common asteroid from the very first discovery detections onwards. The reason for the discontinuity in the observed positions is the rotation of the observer with the Earth as well as the motion of the asteroid and the observer about the Sun. Therefore, the aim of identification is to find a set of orbital elements that reproduce the observed positions with residuals similar to the inevitable observational uncertainty. Unless the astrometric observation sets are linked, the corresponding asteroid is eventually lost as the uncertainty of the predicted positions grows too large to allow successful follow-up. Whereas the presented identification theory and the numerical comparison algorithm are generally applicable, that is, also in fields other than astronomy (e.g., in the identification of space debris), the numerical methods developed for asteroid identification can immediately be applied to all objects on heliocentric orbits with negligible effects due to non-gravitational forces in the time frame of the analysis. The methods developed have been successfully applied to various identification problems. Simulations have shown that the methods developed are able to find virtually all correct linkages despite challenges such as numerous scarce observation sets, astrometric uncertainty, numerous objects confined to a limited region on the celestial sphere, long linking intervals, and substantial parallaxes. Tens of previously unknown main-belt asteroids have been identified with the short-term method in a preliminary study to locate asteroids among numerous unidentified sets of single-night astrometry of moving objects, and scarce astrometry obtained nearly simultaneously with Earth-based and space-based telescopes has been successfully linked despite a substantial parallax. Using the long-term method, thousands of realistic 3-linkages typically spanning several apparitions have so far been found among designated observation sets each spanning less than 48 hours.