18 resultados para Nd-doped material
em Helda - Digital Repository of University of Helsinki
Resumo:
The work is based on the assumption that words with similar syntactic usage have similar meaning, which was proposed by Zellig S. Harris (1954,1968). We study his assumption from two aspects: Firstly, different meanings (word senses) of a word should manifest themselves in different usages (contexts), and secondly, similar usages (contexts) should lead to similar meanings (word senses). If we start with the different meanings of a word, we should be able to find distinct contexts for the meanings in text corpora. We separate the meanings by grouping and labeling contexts in an unsupervised or weakly supervised manner (Publication 1, 2 and 3). We are confronted with the question of how best to represent contexts in order to induce effective classifiers of contexts, because differences in context are the only means we have to separate word senses. If we start with words in similar contexts, we should be able to discover similarities in meaning. We can do this monolingually or multilingually. In the monolingual material, we find synonyms and other related words in an unsupervised way (Publication 4). In the multilingual material, we ?nd translations by supervised learning of transliterations (Publication 5). In both the monolingual and multilingual case, we first discover words with similar contexts, i.e., synonym or translation lists. In the monolingual case we also aim at finding structure in the lists by discovering groups of similar words, e.g., synonym sets. In this introduction to the publications of the thesis, we consider the larger background issues of how meaning arises, how it is quantized into word senses, and how it is modeled. We also consider how to define, collect and represent contexts. We discuss how to evaluate the trained context classi?ers and discovered word sense classifications, and ?nally we present the word sense discovery and disambiguation methods of the publications. This work supports Harris' hypothesis by implementing three new methods modeled on his hypothesis. The methods have practical consequences for creating thesauruses and translation dictionaries, e.g., for information retrieval and machine translation purposes. Keywords: Word senses, Context, Evaluation, Word sense disambiguation, Word sense discovery.
Resumo:
Tutkielma käsittelee suomentamani Vampiraatit: Kirottujen laiva -nuortenromaanin käännösprosessia. Materiaalina on kustantajalle toimittamani näytekäännös, joka käsittää yhden kokonaisen luvun ja lisäksi kirjan tapahtumiin keskeisesti liittyvän runon. Molemmista tarkastellaan sekä lopullisia, julkaistuja versioita että ensimmäisiä raakaversioita. Julkaistut versiot ovat osa varsinaista tutkielmaa, raakaversiot ja lähtötekstit puolestaan on sisällytetty mukaan liitteinä. Tarkastelunäkökulmani on pääosin deskriptiivinen ja kontrastiivinen. Proosa-analyysi jakautuu kahteen osaan. Ensimmäisessä osassa tutkin tapoja, joilla käännökseni vastustaa ns. lisääntyvän standardisoitumisen lakia (the law of growing standardization), jota Gideon Toury on ehdottanut yleispäteväksi käännöslaiksi. Touryn laki ennustaa, että käännökset ovat useimmiten tyylillisesti alkuteoksiaan latteampia. Esimerkkini kuitenkin osoittavat, että kääntäjän on mahdollista valita ratkaisunsa niin, että latistumiselta vältytään, ainakin silloin, kun lähtöteksti on melko suoraviivaista. Proosa-analyysin jälkimmäinen osa keskittyy käännöksen muokkaamiseen. Vertaan siinä näytekäännös-luvun ensimmäistä versiota julkaistuun versioon ja tutkin muun muassa sitä, missä määrin ensimmäinen versio sisältää lähtökielen interferenssiä, ts. missä määrin englannille tyypilliset rakenteet paistavat siitä läpi. Tarkastelun kohteena ovat myös kohdekieliset kömpelyydet ja niiden poistaminen sekä pienet mutta kokonaisuuden kannalta tärkeät tyylilliset muutokset. Esimerkeistä käy selvästi ilmi kääntämisen prosessimainen luonne. Käännösnäytteeseen sisältyneen runon suomentaminen oli oma erillinen kokonaisuutensa. Tässä osiossa vertailen lähtötekstiä, raakaversiota ja julkaistua käännöstä rinnakkain säkeistö säkeistöltä. Tarkastelussa painottuvat edelleen tekstin muokkaaminen ja hiominen. Analyysien taustaksi esittelen lyhyesti alkuteoksen ja sen kirjoittajan Justin Somperin. Kuvailen myös omaa käännösfilosofiaani ja esittelen kaksi siihen voimakkaasti vaikuttanutta suomentajaa.
Resumo:
The dissertation analyses the political culture of Sweden during the reign of King Gustav III (1771-1792). This period commonly referred to as the Gustavian era followed the so-called Age of Liberty ending half a century of strong parliamentary rule in Sweden. The question at the heart of this study engages with the practice of monarchical rule under Gustav III, its ideological origins and power-political objectives as well as its symbolic expression. The study thereby addresses the very nature of kingship. In concrete terms, why did Gustav III, his court, and his civil service vigorously pursue projects that contemporaneous political opponents and, in particular, subsequent historiography have variously pictured as irrelevant, superficial, or as products of pure vanity? The answer, the study argues, is to be found in patterns of political practice as developed and exercised by Gustav III and his administration, which formed a significant part of the political culture of Gustavian Sweden. The dissertation is divided into three parts. The first traces the use and development of royal graces chivalric orders, medals, titles, privileges, and other gifts issued by the king. The practice of royal reward is illustrated through two case studies: the 1772 coup d état that established Gustav III s rule, and the birth and baptism of the crown prince, Gustav Adolf, in 1778. The second part deals with the establishment of the Court of Appeal in Vasa in 1776. The formation of the Appeals Court was accompanied by a host of ceremonial, rhetorical, emblematic, and architectural features solidifying its importance as one of Gustav III s most symbolic administrative reform projects and hence portraying the king as an enlightened monarch par excellence. The third and final part of the thesis engages with war as a cultural phenomenon and focuses on the Russo-Swedish War of 1788-1790. In this study, the war against Russia is primarily seen as an arena for the king and other players to stage, create and re-create as well as articulate themselves through scenes and roles adhering to a particular cultural idiom. Its codes and symbolic forms, then, were communicated by means of theatre, literature, art, history, and classical mythology. The dissertation makes use of a host of sources: protocols, speeches, letters, diaries, newspapers, poetry, art, medals, architecture, inscriptions and registers. Traditional political source material and literary and art sources are studied as totalities, not as separate entities. Also it is argued that political and non-fictional sources cannot be understood properly without acknowledging the context of genre, literary conventions, and artistic modes. The study critically views the futile, but nonetheless almost habitual juxtaposition of the reality of images, ideas, and metaphors, and the reality of supposedly factual historical events. Significantly, the thesis presumes the symbolic dimension to be a constitutive element of reality, not its cooked up misrepresentation. This presumption is reflected in a discussion of the concept of role , which should not be anachronistically understood as roles in which the king cast himself at different times and in different situations. Neither Gustav III nor other European sovereigns of this period played the roles as rulers or majesties. Rather, they were monarchs both in their own eyes and in the eyes of their contemporaries as well as in all relations and contexts. Key words: Eighteenth-Century, Gustav III, Cultural History, Monarchs, Royal Graces, the Vasa Court of Appeal, the Russo-Swedish War 1788–1790.
Resumo:
The dissertation presents a functional model for analysis of song translation. The model is developed on the basis of an examination of theatrical songs and a comparison of three translations: the songs of the Broadway musical My Fair Lady (Lerner and Loewe, 1956), made for the premiere productions (1959–1960) in Swedish, Danish, and Norwegian. The analysis explores the three challenges of a song translator: the fitting of a text to existing music, the consideration of a prospective sung performance, and the verbal approximation of the content of the source lyric. The theoretical foundation is based on a functional approach to translation studies (Christiane Nord) and a structuralist/semiotic analysis of a theatrical message (Ivo Osolsobě, building on Roman Jakobson). Thus, three functional levels in the fitting of a text to music are explored: first, a prosodic/phonetic format; secondly, a poetic/rhetoric format; and thirdly, semantic/reflexive values (verbalizing musical expression). Similarly, three functional levels in the textual connections to a prospective performance are explored: first, a presentational goal; secondly, the theatrical potential; and thirdly, dramaturgic values (for example dramatic information and linguistic register). The functionality of Broadway musical theatre songs is analyzed, and the song score of My Fair Lady, source and target lyrics, is studied, with an in-depth analysis of seven of the songs. The three translations were all considered very well-made and are used in productions of the musical to this day. The study finds that the song translators appear to have worked from an understanding of the presentational goal, designed their target texts on the prosodic and poetic shape of the music, and pursued the theatrical functionality of the song, not by copying, but by recreating connections to relevant contexts, partly independently of the source lyrics, using the resources of the target languages. Besides metaphrases (closest possible transfer), paraphrases and additions seem normally to be expected in song translation, but song translators may also follow highly individual strategies – for example, the Norwegian translator is consistently more verbally faithful than the Danish and Swedish translators. As a conclusion, it is suggested that although linguistic and cultural difference play a significant role, a translator’s solution must nevertheless be arrived at, and assessed, in relation to the song as a multimedial piece of material. As far as a song can be considered a theatrical message – singers representing the voice, person, and situation of the song – the descriptive model presented in the study is also applicable to the translation of other types of song.
Resumo:
Drug Analysis without Primary Reference Standards: Application of LC-TOFMS and LC-CLND to Biofluids and Seized Material Primary reference standards for new drugs, metabolites, designer drugs or rare substances may not be obtainable within a reasonable period of time or their availability may also be hindered by extensive administrative requirements. Standards are usually costly and may have a limited shelf life. Finally, many compounds are not available commercially and sometimes not at all. A new approach within forensic and clinical drug analysis involves substance identification based on accurate mass measurement by liquid chromatography coupled with time-of-flight mass spectrometry (LC-TOFMS) and quantification by LC coupled with chemiluminescence nitrogen detection (LC-CLND) possessing equimolar response to nitrogen. Formula-based identification relies on the fact that the accurate mass of an ion from a chemical compound corresponds to the elemental composition of that compound. Single-calibrant nitrogen based quantification is feasible with a nitrogen-specific detector since approximately 90% of drugs contain nitrogen. A method was developed for toxicological drug screening in 1 ml urine samples by LC-TOFMS. A large target database of exact monoisotopic masses was constructed, representing the elemental formulae of reference drugs and their metabolites. Identification was based on matching the sample component s measured parameters with those in the database, including accurate mass and retention time, if available. In addition, an algorithm for isotopic pattern match (SigmaFit) was applied. Differences in ion abundance in urine extracts did not affect the mass accuracy or the SigmaFit values. For routine screening practice, a mass tolerance of 10 ppm and a SigmaFit tolerance of 0.03 were established. Seized street drug samples were analysed instantly by LC-TOFMS and LC-CLND, using a dilute and shoot approach. In the quantitative analysis of amphetamine, heroin and cocaine findings, the mean relative difference between the results of LC-CLND and the reference methods was only 11%. In blood specimens, liquid-liquid extraction recoveries for basic lipophilic drugs were first established and the validity of the generic extraction recovery-corrected single-calibrant LC-CLND was then verified with proficiency test samples. The mean accuracy was 24% and 17% for plasma and whole blood samples, respectively, all results falling within the confidence range of the reference concentrations. Further, metabolic ratios for the opioid drug tramadol were determined in a pharmacogenetic study setting. Extraction recovery estimation, based on model compounds with similar physicochemical characteristics, produced clinically feasible results without reference standards.
Resumo:
The light emitted by flat panel displays (FPD) can be generated in many different ways, such as for example alternating current thin film electroluminescence (ACTFEL), liquid crystal display (LCD), light emitting diode (LED), or plasma display panel (PDP) technologies. In this work, the focus was on ACTFEL devices and the goal was to develop new thin film processes for light emitting materials in ACTFEL devices. The films were deposited with the atomic layer deposition (ALD) method, which has been utilized in the manufacturing of ACTFEL displays since the mid-1980s. The ALD method is based on surface-controlled self-terminated reactions and a maximum of one layer of the desired material can be prepared during one deposition cycle. Therefore, the film thickness can be controlled simply by adjusting the number of deposition cycles. In addition, both large areas and deep trench structures can be covered uniformly. During this work, new ALD processes were developed for the following thin film materials: BaS, CuxS, MnS, PbS, SrS, SrSe, SrTe, SrS1-xSex, ZnS, and ZnS1-xSex. In addition, several ACTFEL devices were prepared where the light emitting material was BaS, SrS, SrS1-xSex, ZnS, or ZnS1-xSex thin film that was doped with Ce, Cu, Eu, Mn, or Pb. The sulfoselenide films were made by substituting the elemental selenium for sulfur on the substrate surface during film deposition. In this way, it was possible to replace a maximum of 90% of the sulfur with selenium, and the XRD analyses indicated that the films were solid solutions. The polycrystalline BaS, SrS, and ZnS thin films were deposited at 180-400, 120-460, and 280-500 °C, respectively, and the processes had a wide temperature range where the growth rate of the films was independent of the deposition temperature. The electroluminescence studies showed that the doped sulfoselenide films resulted in low emission intensity. However, the emission intensities and emission colors of the doped SrS, BaS, and ZnS films were comparable with those found in earlier studies. It was also shown that the electro-optical properties of the different ZnS:Mn devices were different as a consequence of different ZnS:Mn processes. Finally, it was concluded that because the higher deposition temperature seemed to result in a higher emission intensity, the thermal stability of the reactants has a significant role when the light emitting materials of ACTFEL devices are deposited with the ALD method.
Resumo:
The research reported in this thesis dealt with single crystals of thallium bromide grown for gamma-ray detector applications. The crystals were used to fabricate room temperature gamma-ray detectors. Routinely produced TlBr detectors often are poor quality. Therefore, this study concentrated on developing the manufacturing processes for TlBr detectors and methods of characterisation that can be used for optimisation of TlBr purity and crystal quality. The processes under concern were TlBr raw material purification, crystal growth, annealing and detector fabrication. The study focused on single crystals of TlBr grown from material purified by a hydrothermal recrystallisation method. In addition, hydrothermal conditions for synthesis, recrystallisation, crystal growth and annealing of TlBr crystals were examined. The final manufacturing process presented in this thesis deals with TlBr material purified by the Bridgman method. Then, material is hydrothermally recrystallised in pure water. A travelling molten zone (TMZ) method is used for additional purification of the recrystallised product and then for the final crystal growth. Subsequent processing is similar to that described in the literature. In this thesis, literature on improving quality of TlBr material/crystal and detector performance is reviewed. Aging aspects as well as the influence of different factors (temperature, time, electrode material and so on) on detector stability are considered and examined. The results of the process development are summarised and discussed. This thesis shows the considerable improvement in the charge carrier properties of a detector due to additional purification by hydrothermal recrystallisation. As an example, a thick (4 mm) TlBr detector produced by the process was fabricated and found to operate successfully in gamma-ray detection, confirming the validity of the proposed purification and technological steps. However, for the complete improvement of detector performance, further developments in crystal growth are required. The detector manufacturing process was optimized by characterisation of material and crystals using methods such as X-ray diffraction (XRD), polarisation microscopy, high-resolution inductively coupled plasma mass (HR-ICPM), Fourier transform infrared (FTIR), ultraviolet and visual (UV-Vis) spectroscopy, field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS), current-voltage (I-V) and capacity voltage (CV) characterisation, and photoconductivity, as well direct detector examination.
Resumo:
The purpose of this series of studies was to evaluate the biocompatibility of poly (ortho) ester (POE), copolymer of ε-caprolactone and D,L-lactide [P (ε-CL/DL-LA)] and the composite of P(ε-CL/DL-LA) and tricalciumphosphate (TCP) as bone filling material in bone defects. Tissue reactions and resorption times of two solid POE-implants (POE 140 and POE 46) with different methods of sterilization (gamma- and ethylene oxide sterilization), P(ε-CL/DL-LA)(40/60 w/w) in paste form and 50/50 w/w composite of 40/60 w/w P(ε-CL/DL-LA) and TCP and 27/73 w/w composite of 60/40 w/w P(ε-CL/DL-LA) and TCP were examined in experimental animals. The follow-up times were from one week to 52 weeks. The bone samples were evaluated histologically and the soft tissue samples histologically, immunohistochemically and electronmicroscopically. The results showed that the resorption time of gamma sterilized POE 140 was eight weeks and ethylene oxide sterilized POE 140 13 weeks in bone. The resorption time of POE 46 was more than 24 weeks. The gamma sterilized rods started to erode from the surface faster than ethylene oxide sterilized rods for both POEs. Inflammation in bone was from slight to moderate with POE 140 and moderate with POE 46. No highly fluorescent layer of tenascin or fibronectin was found in the soft tissue. Bone healing at the sites of implantation was slower than at control sites with the copolymer in small bone defects. The resorption time for the copolymer was over one year. Inflammation in bone was mostly moderate. Bone healing at the sites of implantation was also slower than at the control sites with the composite in small and large mandibular bone defects. Bone formation had ceased at both sites by the end of follow-up in large mandibular bone defects. The ultrastructure of the connective tissue was normal during the period of observation. It can be concluded that the method of sterilization influenced the resorption time of both POEs. Gamma sterilized POE 140 could have been suitable material for filling small bone defects, whereas the degradation times of solid EO-sterilized POE 140 and POE 46 were too slow to be considered as bone filling material. Solid material is difficult to contour, which can be considered as a disadvantage. The composites were excellent to handle, but the degradation time of the polymer and the composites were too slow. Therefore, the copolymer and the composite can not be recommended as bone filling material.
Resumo:
Background: As the human body ages, the arteries gradually lose their elasticity and become stiffer. Although inevitable, this process is influenced by hereditary and environmental factors. Interestingly, many classic cardiovascular risk factors affect the arterial stiffness. During the last decade, accelerated arterial stiffening has been recognized as an important cardiovascular risk factor associated with increased mortality as well as with several chronic disorders. Objectives: This thesis examines the role of arterial stiffness in relation to variations in a physiological feature in healthy individuals. In addition, the effect on arterial stiffness of an acute transitory disease and the effect of a chronic disease are studied. Furthermore, the thesis analyzes the prognostic value of a marker of arterial stiffness in individuals with chronic disease. Finally, a potential method of reducing arterial stiffness is evaluated. Material and study design: The first study examines pulse wave reflection and pulse wave velocity in relation to muscle fibre distribution in healthy middle-aged men. In the second study, pulse wave reflection in women with current or previous preeclampsia is compared to a healthy control group. The effect of aging on the different blood pressure indices in patients with type 1 diabetes is examined in the third study, whereas the fourth paper studies the relation between these blood pressure indices and mortality in type 2 diabetes. The fifth study evaluates how intake of a fermented milk product containing bioactive peptides affects pulse wave reflection in individuals with mild hypertension. Results and conclusions: Muscle fibre type distribution is not an independent determinant of arterial stiffness in middle-aged males. Pulse wave reflection is increased in pregnant women with preeclampsia, but not in previously preeclamptic non-pregnant women. Patients with type 1 diabetes have a higher and more rapidly increasing pulse pressure, which suggests accelerated arterial stiffening. In elderly type 2 diabetic patients, very high and very low levels of pulse pressure are associated with higher mortality. Intake of milk-derived bioactive peptides reduces pulse wave reflection in hypertensive males but not in hypertensive females.
Resumo:
The output of a laser is a high frequency propagating electromagnetic field with superior coherence and brightness compared to that emitted by thermal sources. A multitude of different types of lasers exist, which also translates into large differences in the properties of their output. Moreover, the characteristics of the electromagnetic field emitted by a laser can be influenced from the outside, e.g., by injecting an external optical field or by optical feedback. In the case of free-running solitary class-B lasers, such as semiconductor and Nd:YVO4 solid-state lasers, the phase space is two-dimensional, the dynamical variables being the population inversion and the amplitude of the electromagnetic field. The two-dimensional structure of the phase space means that no complex dynamics can be found. If a class-B laser is perturbed from its steady state, then the steady state is restored after a short transient. However, as discussed in part (i) of this Thesis, the static properties of class-B lasers, as well as their artificially or noise induced dynamics around the steady state, can be experimentally studied in order to gain insight on laser behaviour, and to determine model parameters that are not known ab initio. In this Thesis particular attention is given to the linewidth enhancement factor, which describes the coupling between the gain and the refractive index in the active material. A highly desirable attribute of an oscillator is stability, both in frequency and amplitude. Nowadays, however, instabilities in coupled lasers have become an active area of research motivated not only by the interesting complex nonlinear dynamics but also by potential applications. In part (ii) of this Thesis the complex dynamics of unidirectionally coupled, i.e., optically injected, class-B lasers is investigated. An injected optical field increases the dimensionality of the phase space to three by turning the phase of the electromagnetic field into an important variable. This has a radical effect on laser behaviour, since very complex dynamics, including chaos, can be found in a nonlinear system with three degrees of freedom. The output of the injected laser can be controlled in experiments by varying the injection rate and the frequency of the injected light. In this Thesis the dynamics of unidirectionally coupled semiconductor and Nd:YVO4 solid-state lasers is studied numerically and experimentally.
Resumo:
Fusion energy is a clean and safe solution for the intricate question of how to produce non-polluting and sustainable energy for the constantly growing population. The fusion process does not result in any harmful waste or green-house gases, since small amounts of helium is the only bi-product that is produced when using the hydrogen isotopes deuterium and tritium as fuel. Moreover, deuterium is abundant in seawater and tritium can be bred from lithium, a common metal in the Earth's crust, rendering the fuel reservoirs practically bottomless. Due to its enormous mass, the Sun has been able to utilize fusion as its main energy source ever since it was born. But here on Earth, we must find other means to achieve the same. Inertial fusion involving powerful lasers and thermonuclear fusion employing extreme temperatures are examples of successful methods. However, these have yet to produce more energy than they consume. In thermonuclear fusion, the fuel is held inside a tokamak, which is a doughnut-shaped chamber with strong magnets wrapped around it. Once the fuel is heated up, it is controlled with the help of these magnets, since the required temperatures (over 100 million degrees C) will separate the electrons from the nuclei, forming a plasma. Once the fusion reactions occur, excess binding energy is released as energetic neutrons, which are absorbed in water in order to produce steam that runs turbines. Keeping the power losses from the plasma low, thus allowing for a high number of reactions, is a challenge. Another challenge is related to the reactor materials, since the confinement of the plasma particles is not perfect, resulting in particle bombardment of the reactor walls and structures. Material erosion and activation as well as plasma contamination are expected. Adding to this, the high energy neutrons will cause radiation damage in the materials, causing, for instance, swelling and embrittlement. In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, {\it i.e. interatomic potentials}, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electron-phonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage in the iron chromium alloy, essentially representing steel, showed that small additions of chromium do not noticeably affect the primary damage in iron. Since a complete assessment of the response of a material in a future full-scale fusion reactor is not achievable using only experimental techniques, molecular dynamics simulations are of vital help. This thesis has not only provided insight into complicated reactor processes and improved current methods, but also offered tools for further simulations. It is therefore an important step towards making fusion energy more than a future goal.
Resumo:
For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reaction. The amount of tritium retained in the wall materials should be minimized and its recycling back to the plasma must be unrestrained, otherwise it cannot be used for fueling the plasma. A very expensive and thus economically not viable solution is to replace the first walls quite often. A better solution is to heat the walls to temperatures where tritium is released. Unfortunately, the exact mechanisms of hydrogen release in tungsten are not known. In this thesis both experimental and computational methods have been used for studying the release and retention of hydrogen in tungsten. The experimental work consists of hydrogen implantations into pure polycrystalline tungsten, the determination of the hydrogen concentrations using ion beam analyses (IBA) and monitoring the out-diffused hydrogen gas with thermodesorption spectrometry (TDS) as the tungsten samples are heated at elevated temperatures. Combining IBA methods with TDS, the retained amount of hydrogen is obtained as well as the temperatures needed for the hydrogen release. With computational methods the hydrogen-defect interactions and implantation-induced irradiation damage can be examined at the atomic level. The method of multiscale modelling combines the results obtained from computational methodologies applicable at different length and time scales. Electron density functional theory calculations were used for determining the energetics of the elementary processes of hydrogen in tungsten, such as diffusivity and trapping to vacancies and surfaces. Results from the energetics of pure tungsten defects were used in the development of an classical bond-order potential for describing the tungsten defects to be used in molecular dynamics simulations. The developed potential was utilized in determination of the defect clustering and annihilation properties. These results were further employed in binary collision and rate theory calculations to determine the evolution of large defect clusters that trap hydrogen in the course of implantation. The computational results for the defect and trapped hydrogen concentrations were successfully compared with the experimental results. With the aforedescribed multiscale analysis the experimental results within this thesis and found in the literature were explained both quantitatively and qualitatively.
Resumo:
This research is connected with an education development project for the four-year-long officer education program at the National Defence University. In this curriculum physics was studied in two alternative course plans namely scientific and general. Observations connected to the later one e.g. student feedback and learning outcome gave indications that action was needed to support the course. The reform work was focused on the production of aligned course related instructional material. The learning material project produced a customized textbook set for the students of the general basic physics course. The research adapts phases that are typical in Design Based Research (DBR). The research analyses the feature requirements for physics textbook aimed at a specific sector and frames supporting instructional material development, and summarizes the experiences gained in the learning material project when the selected frames have been applied. The quality of instructional material is an essential part of qualified teaching. The goal of instructional material customization is to increase the product's customer centric nature and to enhance its function as a support media for the learning process. Textbooks are still one of the core elements in physics teaching. The idea of a textbook will remain but the form and appearance may change according to the prevailing technology. The work deals with substance connected frames (demands of a physics textbook according to the PER-viewpoint, quality thinking in educational material development), frames of university pedagogy and instructional material production processes. A wide knowledge and understanding of different frames are useful in development work, if they are to be utilized to aid inspiration without limiting new reasoning and new kinds of models. Applying customization even in the frame utilization supports creative and situation aware design and diminishes the gap between theory and practice. Generally, physics teachers produce their own supplementary instructional material. Even though customization thinking is not unknown the threshold to produce an entire textbook might be high. Even though the observations here are from the general physics course at the NDU, the research gives tools also for development in other discipline related educational contexts. This research is an example of an instructional material development work together the questions it uncovers, and presents thoughts when textbook customization is rewarding. At the same time, the research aims to further creative customization thinking in instruction and development. Key words: Physics textbook, PER (Physics Education Research), Instructional quality, Customization, Creativity