32 resultados para Fabricated or induced illness by carers
em Helda - Digital Repository of University of Helsinki
Resumo:
Bestiality was in the 18th century a more difficult problem in terms of criminal policy in Sweden and Finland than in any other Christian country in any other period. In the legal history of deviant sexuality, the phenomenon was uniquely widespread by international comparison. The number of court cases per capita in Finland was even higher than in Sweden. The authorities classified bestiality among the most serious crimes and a deadly sin. The Court of Appeal in Turku opted for an independent line and was clearly more lenient than Swedish courts of justice. Death sentences on grounds of bestiality ended in the 1730s, decades earlier than in Sweden. The sources for the present dissertation include judgment books and Court of Appeal decisions in 253 cases, which show that the persecution of those engaging in bestial acts in 18th century Finland was not organised by the centralised power of Stockholm. There is little evidence of local campaigns that would have been led by authorities. The church in its orthodoxy was losing ground and the clergy governed their parishes with more pragmatism than the Old Testament sanctioned. When exposing bestiality, the legal system was compelled to rely on the initiative of the public. In cases of illicit intercourse or adultery the authorities were even more dependent on the activeness of the local community. Bestiality left no tangible evidence, illegitimate children, to betray the crime to the clergy or secular authorities. The moral views of the church and the local community were not on a collision course. It was a common view that bestiality was a heinous act. Yet nowhere near all crimes came to the authorities' knowledge. Because of the heavy burden of proof, the legal position of the informer was difficult. Passiveness in reporting the crime was partly because most Finns felt it was not their place to intervene in their neighbours' private lives, as long as that privacy posed no serious threat to the neighbourhood. Hidden crime was at least as common as crime more easily exposed and proven. A typical Finnish perpetrator of bestiality was a young unmarried man with no criminal background or mental illness. The suspects were not members of ethnic minorities or marginal social groups. In trials, farmhands were more likely to be sentenced than their masters, but a more salient common denominator than social and economical status was the suspects' young age. For most of the defendants bestiality was a deep-rooted habit, which had been adopted in early youth. This form of subculture spread among the youth, and the most susceptible to experiment with the act were shepherds. The difference between man and animal was not clear-cut or self-evident. The difficulty in drawing the line is evident both in legal sources and Finnish folklore. The law that required that the animal partners be slaughtered led to the killing of thousands of cows and mares, and thereby to substantial material losses to their owners. Regarding bestiality as a crime against property motivated people to report it. The belief that the act would produce human-animal mongrels or that it would poison the milk and the meat horrified the public more than the teachings of the church ever could. Among the most significant aspects in the problems regarding the animals is how profoundly different the worldview of 18th century people was from that of today.
Resumo:
Palladin is a novel actin microfilament associated protein, which together with myotilin and myopalladin forms a novel cytoskeletal IgC2 domain protein family. Whereas the expression of myotilin and myopalladin is limited mainly to striated muscle, palladin is widely expressed in both epithelial and mesenchymal tissues, including heart and the nervous system. Palladin has a complex genetic structure and it is expressed as several different sized and structured splice variants, which also display differences in their expression pattern and interactions. In muscle cells, all the family members localize to the sarcomeric Z-disc, and in non-muscle cells palladin also localizes to the stress-fiber-dense regions, lamellipodia, podosomes and focal adhesions. A common feature of this protein family is the binding to α-actinin, but other interactions are mostly unique to each member. Palladin has been shown to interact with several proteins, including VASP, profilin, Eps8, LASP-1 and LPP. Its domain structure, lack of enzymatic activity and multiple interactions define it as a molecular scaffolding protein, which links together proteins with different functional modalities into large complexes. Palladin has an important role in cytoskeletal regulation, particularly in stress fiber formation and stabilization. This assumption is supported by several experimental results. First, over-expression of palladin in non-muscle cells results in rapid reorganization of the actin cytoskeleton and formation of thick actin bundles. Second, the knock-down of palladin with anti-sense and siRNA techniques or knock-out by genetic methods leads to defective stress fiber formation. Furthermore, palladin is usually up-regulated in situations requiring a highly organized cytoskeleton, such as differentiation of dendritic cells, trophoblasts and myofibroblasts, and activation of astrocytes during glial scar formation. The protein family members have also direct disease linkages; myotilin missense mutations are the cause of LGMD1A and myofibrillar myopathy. Palladin mutations and polymorphisms, on the other hand, have been linked to hereditary pancreatic cancer and myocardial infarction, respectively. In this study we set out to characterize human palladin. We identified several palladin isoforms, studied their tissue distribution and sub-cellular localization. Four novel interaction partners were identified; ezrin, ArgBP2, SPIN90 and Src-kinase.The previously identified interaction between palladin and α-actinin was also characterized in detail. All the identified new binding partners are actin cytoskeleton associated proteins; ezrin links the plasma membrane to the cytoskeleton, ArgBP2 and SPIN90 localize, among other structures, to the lamellipodia and in cardiomyocytes to the Z-disc. Src is a transforming tyrosine kinase, which besides its role in oncogenesis has also important cytoskeletal associations. We also studied palladin in myofibroblasts, which are specialized cells involved in diverse physiological and pathological processes, such as wound healing and tissue fibrosis. We demonstrated that palladin is up-regulated during the differentiation of myofibroblasts in an isoform specific manner, and that this up-regulation is induced by TGF-β via activation of both the SMAD and MAPK signalling cascades. In summary, the results presented here describe the initial characterization of human palladin and offer a basis for further studies.
Resumo:
Environmentally benign and economical methods for the preparation of industrially important hydroxy acids and diacids were developed. The carboxylic acids, used in polyesters, alkyd resins, and polyamides, were obtained by the oxidation of the corresponding alcohols with hydrogen peroxide or air catalyzed by sodium tungstate or supported noble metals. These oxidations were carried out using water as a solvent. The alcohols are also a useful alternative to the conventional reactants, hydroxyaldehydes and cycloalkanes. The oxidation of 2,2-disubstituted propane-1,3-diols with hydrogen peroxide catalyzed by sodium tungstate afforded 2,2-disubstituted 3-hydroxypropanoic acids and 1,1-disubstituted ethane-1,2-diols as products. A computational study of the Baeyer-Villiger rearrangement of the intermediate 2,2-disubstituted 3-hydroxypropanals gave in-depth data of the mechanism of the reaction. Linear primary diols having chain length of at least six carbons were easily oxidized with hydrogen peroxide to linear dicarboxylic acids catalyzed by sodium tungstate. The Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols and linear primary diols afforded the highest yield of the corresponding hydroxy acids, while the Pt, Bi/C catalyzed oxidation of the diols afforded the highest yield of the corresponding diacids. The mechanism of the promoted oxidation was best described by the ensemble effect, and by the formation of a complex of the hydroxy and the carboxy groups of the hydroxy acids with bismuth atoms. The Pt, Bi/C catalyzed air oxidation of 2-substituted 2-hydroxymethylpropane-1,3-diols gave 2-substituted malonic acids by the decarboxylation of the corresponding triacids. Activated carbon was the best support and bismuth the most efficient promoter in the air oxidation of 2,2-dialkylpropane-1,3-diols to diacids. In oxidations carried out in organic solvents barium sulfate could be a valuable alternative to activated carbon as a non-flammable support. In the Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols to 2,2-disubstituted 3-hydroxypropanoic acids the small size of the 2-substituents enhanced the rate of the oxidation. When the potential of platinum of the catalyst was not controlled, the highest yield of the diacids in the Pt, Bi/C catalyzed air oxidation of 2,2-dialkylpropane-1,3-diols was obtained in the regime of mass transfer. The most favorable pH of the reaction mixture of the promoted oxidation was 10. The reaction temperature of 40°C prevented the decarboxylation of the diacids.
Resumo:
The structure and function of northern ecosystems are strongly influenced by climate change and variability and by human-induced disturbances. The projected global change is likely to have a pronounced effect on the distribution and productivity of different species, generating large changes in the equilibrium at the tree-line. In turn, movement of the tree-line and the redistribution of species produce feedback to both the local and the regional climate. This research was initiated with the objective of examining the influence of natural conditions on the small-scale spatial variation of climate in Finnish Lapland, and to study the interaction and feedback mechanisms in the climate-disturbances-vegetation system near the climatological border of boreal forest. The high (1 km) resolution spatial variation of climate parameters over northern Finland was determined by applying the Kriging interpolation method that takes into account the effect of external forcing variables, i.e., geographical coordinates, elevation, sea and lake coverage. Of all the natural factors shaping the climate, the geographical position, local topography and altitude proved to be the determining ones. Spatial analyses of temperature- and precipitation-derived parameters based on a 30-year dataset (1971-2000) provide a detailed description of the local climate. Maps of the mean, maximum and minimum temperatures, the frost-free period and the growing season indicate that the most favourable thermal conditions exist in the south-western part of Lapland, around large water bodies and in the Kemijoki basin, while the coldest regions are in highland and fell Lapland. The distribution of precipitation is predominantly longitudinally dependent but with the definite influence of local features. The impact of human-induced disturbances, i.e., forest fires, on local climate and its implication for forest recovery near the northern timberline was evaluated in the Tuntsa area of eastern Lapland, damaged by a widespread forest fire in 1960 and suffering repeatedly-failed vegetation recovery since that. Direct measurements of the local climate and simulated heat and water fluxes indicated the development of a more severe climate and physical conditions on the fire-disturbed site. Removal of the original, predominantly Norway spruce and downy birch vegetation and its substitution by tundra vegetation has generated increased wind velocity and reduced snow accumulation, associated with a large variation in soil temperature and moisture and deep soil frost. The changed structural parameters of the canopy have determined changes in energy fluxes by reducing the latter over the tundra vegetation. The altered surface and soil conditions, as well as the evolved severe local climate, have negatively affected seedling growth and survival, leading to more unfavourable conditions for the reproduction of boreal vegetation and thereby causing deviations in the regional position of the timberline. However it should be noted that other factors, such as an inadequate seed source or seedbed, the poor quality of the soil and the intensive logging of damaged trees could also exacerbate the poor tree regeneration. In spite of the failed forest recovery at Tunsta, the position and composition of the timberline and tree-line in Finnish Lapland may also benefit from present and future changes in climate. The already-observed and the projected increase in temperature, the prolonged growing season, as well as changes in the precipitation regime foster tree growth and new regeneration, resulting in an advance of the timberline and tree-line northward and upward. This shift in the distribution of vegetation might be decelerated or even halted by local topoclimatic conditions and by the expected increase in the frequency of disturbances.
Resumo:
Keuhkosyöpä on yleisimpiä syöpätauteja. Se jaetaan kahteen päätyyppiin: pienisoluiseen ja ei-pienisoluiseen keuhkosyöpään. Ei-pienisoluinen keuhkosyöpä jaetaan lisäksi alatyyppeihin, joista suurimmat ovat levyepiteeli-, adeno- ja suurisoluinen karsinooma. Keuhkosyövän tärkein riskitekijä on tupakointi, mutta muutkin työ- ja elinympäristön altisteet, kuten asbesti, voivat johtaa syöpään. Väitöstyössä tutkittiin kahdenlaisten keuhkosyöpäryhmien erityispiirteitä. Työssä kartoitettiin, onko löydettävissä muutoksia, jotka erottavat asbestikeuhkosyövät muista syövistä sekä luuytimeen varhaisessa vaiheessa leviävät keuhkosyövät leviämättömistä syövistä. Tutkimusten ensimmäisessä vaiheessa käytettiin mikrosirupohjaisia menetelmiä, jotka mahdollistavat jopa kaikkien geenien tarkastelun yhden kokeen avulla. Vertailevien mikrosirututkimusten avulla on mahdollista paikantaa geenejä tai kromosomialueita, joiden muutokset erottelevat ryhmät toisistaan. Asbestiin liittyvissä tutkimuksissa paikannettiin kuusi kromosomialuetta, joissa geenien kopiolukumäärän sekä ilmenemistason muutokset erottelivat potilaat altistushistorian mukaan. Riippumattomilla laboratoriomenetelmillä tehtyjen jatkoanalyysien avulla pystyttiin varmistamaan, että 19p-alueen häviämä oli yhteydessä asbestialtistukseen. Työssä osoitettiin myös, että 19p-alueen muutoksia voidaan indusoida altistamalla soluja asbestille in vitro. Tutkimuksessa saatiin lisäksi viitteitä asbestispesifisistä muutoksista signaalinvälitysreiteissä, sillä yhdessä toimivien geenien ilmentymisessä havaittiin eroja asbestille altistuneiden ja altistumattomien välillä. Vertailemalla luuytimeen syövän aikaisessa vaiheessa levinneiden ja leviämättömien keuhkoadenokarsinoomien muutosprofiileita toisiinsa, paikannettiin viisi aluetta, joilla geenien kopiolukumäärä- sekä ilmenemistason muutokset erottelivat ryhmät toisistaan. Jatkoanalyyseissä havaittiin, että 4q-alueen häviämää esiintyi adenokarsinoomien lisäksi levyepiteelikarsinoomiin, jotka olivat levinneet luuytimeen. Myös keuhkosyöpien aivometastaaseissa alue oli toistuvasti hävinnyt. Väitöstyön tutkimukset osoittavat, että vertailevien mikrosiruanalyysien avulla saadaan tietoa syöpäryhmien erityispiirteistä. Työssä saadut tulokset osoittavat, että 19p-alueen muutokset ovat tyypillisiä asbestikeuhkosyöville ja 4q-alueen muutokset luuytimeen aikaisessa vaiheessa leviäville keuhkosyöville.
Resumo:
The continuous production of blood cells, a process termed hematopoiesis, is sustained throughout the lifetime of an individual by a relatively small population of cells known as hematopoietic stem cells (HSCs). HSCs are unique cells characterized by their ability to self-renew and give rise to all types of mature blood cells. Given their high proliferative potential, HSCs need to be tightly regulated on the cellular and molecular levels or could otherwise turn malignant. On the other hand, the tight regulatory control of HSC function also translates into difficulties in culturing and expanding HSCs in vitro. In fact, it is currently not possible to maintain or expand HSCs ex vivo without rapid loss of self-renewal. Increased knowledge of the unique features of important HSC niches and of key transcriptional regulatory programs that govern HSC behavior is thus needed. Additional insight in the mechanisms of stem cell formation could enable us to recapitulate the processes of HSC formation and self-renewal/expansion ex vivo with the ultimate goal of creating an unlimited supply of HSCs from e.g. human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPS) to be used in therapy. We thus asked: How are hematopoietic stem cells formed and in what cellular niches does this happen (Papers I, II)? What are the molecular mechanisms that govern hematopoietic stem cell development and differentiation (Papers III, IV)? Importantly, we could show that placenta is a major fetal hematopoietic niche that harbors a large number of HSCs during midgestation (Paper I)(Gekas et al., 2005). In order to address whether the HSCs found in placenta were formed there we utilized the Runx1-LacZ knock-in and Ncx1 knockout mouse models (Paper II). Importantly, we could show that HSCs emerge de novo in the placental vasculature in the absence of circulation (Rhodes et al., 2008). Furthermore, we could identify defined microenvironmental niches within the placenta with distinct roles in hematopoiesis: the large vessels of the chorioallantoic mesenchyme serve as sites of HSC generation whereas the placental labyrinth is a niche supporting HSC expansion (Rhodes et al., 2008). Overall, these studies illustrate the importance of distinct milieus in the emergence and subsequent maturation of HSCs. To ensure proper function of HSCs several regulatory mechanisms are in place. The microenvironment in which HSCs reside provides soluble factors and cell-cell interactions. In the cell-nucleus, these cell-extrinsic cues are interpreted in the context of cell-intrinsic developmental programs which are governed by transcription factors. An essential transcription factor for initiation of hematopoiesis is Scl/Tal1 (stem cell leukemia gene/T-cell acute leukemia gene 1). Loss of Scl results in early embryonic death and total lack of all blood cells, yet deactivation of Scl in the adult does not affect HSC function (Mikkola et al., 2003b. In order to define the temporal window of Scl requirement during fetal hematopoietic development, we deactivated Scl in all hematopoietic lineages shortly after hematopoietic specification in the embryo . Interestingly, maturation, expansion and function of fetal HSCs was unaffected, and, as in the adult, red blood cell and platelet differentiation was impaired (Paper III)(Schlaeger et al., 2005). These findings highlight that, once specified, the hematopoietic fate is stable even in the absence of Scl and is maintained through mechanisms that are distinct from those required for the initial fate choice. As the critical downstream targets of Scl remain unknown, we sought to identify and characterize target genes of Scl (Paper IV). We could identify transcription factor Mef2C (myocyte enhancer factor 2 C) as a novel direct target gene of Scl specifically in the megakaryocyte lineage which largely explains the megakaryocyte defect observed in Scl deficient mice. In addition, we observed an Scl-independent requirement of Mef2C in the B-cell compartment, as loss of Mef2C leads to accelerated B-cell aging (Gekas et al. Submitted). Taken together, these studies identify key extracellular microenvironments and intracellular transcriptional regulators that dictate different stages of HSC development, from emergence to lineage choice to aging.
Resumo:
The economic, political and social face of Europe has been changing rapidly in the past decades. These changes are unique in the history of Europe, but not without challenges for the nation states. The support for the European integration varies among the countries. In order to understand why certain developments or changes are perceived as threatening or as desired by different member countries, we must consider the social representations of the European integration on the national level: how the EU is represented to its citizens in media and in educational systems, particularly in the curricula and textbooks. The current study is concerned with the social representations of the European integration in the curricula and school textbooks in five European countries: France, Britain, Germany, Finland and Sweden. Besides that, the first volume of the common Franco-German history textbook was analyzed, since it has been seen as a model for a common European history textbook. As the collective representations, values and identities are dominantly mediated and imposed through media and educational systems, the national curricula and textbooks make an interesting starting point for the study of the European integration and of national and European identities. The social representations theory provides a comprehensive framework for the study of the European integration. By analyzing the curricula and history and civics textbooks of major educational publishers, the study aimed to demonstrate what is written on the European integration and how it is portrayed how the European integration is understood, made familiar and concretized in the educational context in the five European countries. To grasp the phenomenon of the European integration in the textbooks in its entirety, it was investigated from various perspectives. The two analysis methods of content analysis, the automatic analysis with ALCESTE and a more qualitative theory-driven content analysis, were carried out to give a more vivid and multifaceted picture of the object of the research. The analysis of the text was complemented with the analysis of visual material. Drawing on quantitative and qualitative methods, the contents, processes, visual images, transformations and structures of the social representations of European integration, as well as the communicative styles of the textbooks were examined. This study showed the divergent social representations of the European integration, anchored in the nation states, in the five member countries of the European Union. The social representations were constructed around different central core elements: French Europe in the French textbooks, Ambivalent Europe in the British textbooks, Influential and Unifying EU in the German textbooks, Enabling and Threatening EU in the Finnish textbooks, Sceptical EU in the Swedish textbooks and EU as a World Model in the Franco-German textbook. Some elements of the representations were shared by all countries such as peace and economic aspects of the European cooperation, whereas other elements of representations were found more frequently in some countries than in others, such as ideological, threatening or social components of the phenomenon European integration. The study also demonstrated the linkage between social representations of the EU and national and European identities. The findings of this study are applicable to the study of the European integration, to the study of education, as well as to the social representation theory.
Resumo:
The advertising business is often said to favour a modern, innovative language use. This is a statement not easily verified. Newspaper ads are in fact the genre of written language that linguists have paid the least attention to. People writing texts for newspaper ads are individuals representing contemporary language use. Advertisements representing different periods therefore diverge not only regarding the change of style and form advertising undergoes over time, but changes in the language itself also reflect the continuous process of alteration in a speech community. Advertisements and marketing material on the whole, are also read by many individuals who otherwise are not accustomed to reading at all. The marketing manager, the copywriter and the Art Director, in other words, produce texts that unconsciously function as language models. Changes are not created by, or urged on by linguistic expertise, but by ordinary users confronting other ordinary users. From a sociolinguistic perspective the widely diffused advertising language is therefore a most influential factor.
Resumo:
Reklam sägs använda ett modernt, gärna ett nyskapande språk. Detta är ett påstående som inte så lätt kan verifieras. Tidningsannonsen är troligen den skriftspråksgenre som har fått minst uppmärksamhet av språkforskare. De som skriver texten i en tidningsannons är personer som representerar det samtida språkbruket. Annonser som representerar olika tidsepoker skiljer sig därför från varandra inte bara genom att annonsen förändras i fråga om stil och form. Annonsens språk avspeglar också den språkliga förändringsprocess som kontinuerligt pågår i varje språksamhälle. Annonser, och marknadsföringsmaterial över huvud taget, läses också av många människor som i övrigt läser mycket litet eller kanske inte alls. Marknadsföraren, reklamskribenten (copywriter) och AD:n producerar m.a.o. texter som på ett omedvetet sätt kommer att vara språkmodeller för sina läsare. Förändringar i språket kreeras inte och drivs inte på av språkforskare, utan av vanliga språkbrukare i interaktion med andra språkbrukare. Sett ur ett sociolingvistiskt perspektiv har det vitt spridda reklamspråket därför inflytande på språket i samhället. Syftet med det reklamspråksprojekt som presenteras i föreliggande rapport är att analysera hur och när förändringar i svenskan som uppträder i Sverige dyker upp i annonser som skrivs på svenska i Finland. Reklam på svenska Finland under 1900-talet står i fokus, och tidningsannonser för Stockmanns varuhus i Helsingfors utgör primärmaterialet. Tidningsannonser för varuhuset Nordiska Kompaniet (NK) i Stockholm under motsvarande tid tjänar som jämförelsematerial. I denna rapport presenteras projektets syfte, de uppställda forskningsfrågorna, och resonemanget illustreras med exempel ur projektmaterialet. Rapporten innehåller också en beskrivning av projektets reklamdatabas och basfakta om material och metoder. -
Resumo:
Nanomaterials with a hexagonally ordered atomic structure, e.g., graphene, carbon and boron nitride nanotubes, and white graphene (a monolayer of hexagonal boron nitride) possess many impressive properties. For example, the mechanical stiffness and strength of these materials are unprecedented. Also, the extraordinary electronic properties of graphene and carbon nanotubes suggest that these materials may serve as building blocks of next generation electronics. However, the properties of pristine materials are not always what is needed in applications, but careful manipulation of their atomic structure, e.g., via particle irradiation can be used to tailor the properties. On the other hand, inadvertently introduced defects can deteriorate the useful properties of these materials in radiation hostile environments, such as outer space. In this thesis, defect production via energetic particle bombardment in the aforementioned materials is investigated. The effects of ion irradiation on multi-walled carbon and boron nitride nanotubes are studied experimentally by first conducting controlled irradiation treatments of the samples using an ion accelerator and subsequently characterizing the induced changes by transmission electron microscopy and Raman spectroscopy. The usefulness of the characterization methods is critically evaluated and a damage grading scale is proposed, based on transmission electron microscopy images. Theoretical predictions are made on defect production in graphene and white graphene under particle bombardment. A stochastic model based on first-principles molecular dynamics simulations is used together with electron irradiation experiments for understanding the formation of peculiar triangular defect structures in white graphene. An extensive set of classical molecular dynamics simulations is conducted, in order to study defect production under ion irradiation in graphene and white graphene. In the experimental studies the response of carbon and boron nitride multi-walled nanotubes to irradiation with a wide range of ion types, energies and fluences is explored. The stabilities of these structures under ion irradiation are investigated, as well as the issue of how the mechanism of energy transfer affects the irradiation-induced damage. An irradiation fluence of 5.5x10^15 ions/cm^2 with 40 keV Ar+ ions is established to be sufficient to amorphize a multi-walled nanotube. In the case of 350 keV He+ ion irradiation, where most of the energy transfer happens through inelastic collisions between the ion and the target electrons, an irradiation fluence of 1.4x10^17 ions/cm^2 heavily damages carbon nanotubes, whereas a larger irradiation fluence of 1.2x10^18 ions/cm^2 leaves a boron nitride nanotube in much better condition, indicating that carbon nanotubes might be more susceptible to damage via electronic excitations than their boron nitride counterparts. An elevated temperature was discovered to considerably reduce the accumulated damage created by energetic ions in both carbon and boron nitride nanotubes, attributed to enhanced defect mobility and efficient recombination at high temperatures. Additionally, cobalt nanorods encapsulated inside multi-walled carbon nanotubes were observed to transform into spherical nanoparticles after ion irradiation at an elevated temperature, which can be explained by the inverse Ostwald ripening effect. The simulation studies on ion irradiation of the hexagonal monolayers yielded quantitative estimates on types and abundances of defects produced within a large range of irradiation parameters. He, Ne, Ar, Kr, Xe, and Ga ions were considered in the simulations with kinetic energies ranging from 35 eV to 10 MeV, and the role of the angle of incidence of the ions was studied in detail. A stochastic model was developed for utilizing the large amount of data produced by the molecular dynamics simulations. It was discovered that a high degree of selectivity over the types and abundances of defects can be achieved by carefully selecting the irradiation parameters, which can be of great use when precise pattering of graphene or white graphene using focused ion beams is planned.
Resumo:
Nature, science and technology. The image of Finland through popular enlightenment texts 1870-1920 This doctoral thesis looks at how Finnish popular enlightenment texts published between 1870 and 1920 took part in the process of forming a genuine Finnish national identity. The same process was occurring in other Nordic countries at the time and the process in Finland was in many ways influenced by them, particularly Sweden. In Finland the political realities under Russian rule especially during the Russification years, and the fact that its history was considered to be short compared to other European countries, made this nation-building process unique. The undertaking was led by members of the national elite, influential in the cultural, academic as well as political arenas, who were keen to support the foundation of a modern Finnish identity. The political realities and national philosophy of history necessitated a search for elements of identity in nature and the Finnish landscape, which were considered to have special national importance: Finland was very much determined as a political entity on the basis of its geography and nature. Nature was also used as means of taking a cultural or political view in terms of, for example, geographical facts such as the nation s borders or the country s geographical connections to Western Europe. In the building of a proper national identity the concept of nature was not, however, static, but was more or less affected by political and economic progress in society. This meant that nature, or the image of the national landscape, was no longer seen only as a visual image of the national identity, but also as a source of science, technology and a prosperous future. The role of technology in this process was very much connected to the ability to harness natural resources to serve national interests. The major change in this respect had occurred by the early 20th century, when indisputable scientific progress altered the relationship between nature and technology. Concerning technology, the thesis is mainly interested in the large and at the time modern technological manifestations, such as railways, factories and industrial areas in Finland. Despite the fact that the symbiosis between national nature and international but successfully localized technology was in Finnish popular enlightenment literature depicted mostly as a national success story, concerns began to arise already in last years of the 19th century. It was argued that the emerging technology would eventually destroy Finland s natural environment, and therefore the basis of its national identity. The question was not how to preserve nature through natural science, but more how to conserve such natural resources and images that were considered to be the basis of national identity and thus of the national history. National parks, isolated from technology, and distant enough so as to have no economic value, were considered the solution to the problem. Methodologically the thesis belongs to the genre of science and technology studies, and offers new viewpoints with regard to both the study of Finnish popular enlightenment literature and the national development process as a whole.
Resumo:
Dioxins are ubiquitous environmental poisons having unequivocal adverse health effects on various species. The majority of their effects are thought to be mediated by the aryl hydrocarbon receptor (AhR). Developing human teeth may be sensitive to dioxins and the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is developmentally toxic to rodent teeth. Mechanisms of TCDD toxicity can be studied only experimentally. The aim of the present thesis work was to delineate morphological end points of developmental toxicity of TCDD in rat and mouse teeth and salivary glands in vivo and in vitro and to characterize their cellular and molecular background. Mouse embryonic teeth and submandibular gland explants were grown in organ culture without/with TCDD at various concentrations, examined stereomicroscopically and processed for histological examination. The effects of TCDD on cellular mechanisms essential for organogenesis were investigated. The expression of various genes eliciting the response to TCDD exposure or involved in tooth and salivary gland development was studied at the mRNA and/or protein levels by in situ hybridization and immunohistochemistry. Association of the dental effects of TCDD with the resistance of a rat strain to TCDD acute lethality was analyzed in two lactationally exposed rat strains. The effect of TCDD on rat molar tooth mineralization was studied in tissue sections. TCDD dose- and developmental stage-dependently interfered with tooth formation. TCDD prevented early mouse molar tooth morphogenesis and altered cuspal morphology by enhancing programmend cell death, or apoptosis, in dental epithelial cells programmed to undergo apotosis. Cell proliferation was not affected. TCDD impaired mineralization of rat molar dental matrices, possibly by specifically reducing the expression of the mineralization-related dentin sialophosphoprotein gene shown in cultured mouse teeth. The impaired mineralization of rat teeth was accompanied by decreased expression of AhR and the TCDD-inducible xenobiotic-metabolozing enzyme P4501 A1 (CYP1A1), suggesting mediation of the TCDD effect by the AhR pathway. The severe interference by TCDD with rat incisor formation was independent of the genotypic variation of AhR determining the resistance of a rat strain to TCDD acute lethality. The impairment by TCDD of mouse submandibular gland branching morphogenesis was associated with CYP1A1 induction and involved blockage of EGF receptor signalling. In conclusion, TCDD exposure is likely to have activated the AhR pathway in target organs with the consequent activation of other signalling pathways involving developmentally regulated genes. The resultant phenotype is organ specific and modified by epithelial-mesenchymal interactions and dependent on dose as well as the stage of organogenesis at the time of TCDD exposure. Teeth appear to be responsive to TCDD exposure throughout their development.
Resumo:
Tissue destruction associated with the periodontal disease progression is caused by a cascade of host and microbial factors and proteolytic enzymes. Aberrant laminin-332 (Ln-332), human beta defensin (hBD), and matrix metalloproteinase (MMP) functions have been found in oral inflammatory diseases. The null-allele mouse model appears as the next step in oral disease research. The MMP-8 knock-out mouse model allowed us to clarify the involvement of MMP-8 in vivo in oral and related inflammatory diseases where MMP-8 is suggested to play a key role in tissue destruction. The cleaved Ln-332 γ2-chain species has been implicated in the apical migration of sulcular epithelial cells during the formation of periodontal pockets. We demonstrated that increased Ln-332 fragment levels in gingival crevicular fluid (GCF) are strongly associated with the severity of inflammation in periodontitis. Porphyromonas gingivalis trypsin-like proteinase can cleave an intact Ln-332 γ2-chain into smaller fragments and eventually promote the formation of periodontal pockets. hBDs are components of an innate mucosal defense against pathogenic microbes. Our results suggest that P. gingivalis trypsin-like proteinase can degrade hBD and thus reduce the innate immune response. Elevated levels and the increased activity of MMPs have been detected in several pathological tissue-destructive conditions where MMPs are shown to cleave extracellular matrix (ECM) and basement membrane (BM) molecules and to facilitate tissue destruction. Elevated levels of MMP-8 have been reported in many inflammatory diseases. In periodontitis, MMP-8 levels in gingival crevicular fluid (GCF) and in peri-implant sulcular fluid (PISF) are elevated at sites of active inflammation, and the increased levels of MMP-8 are mainly responsible for collagenase activity, which leads to tissue destruction. MMP-25, expressed by neutrophils, is involved in inflammatory diseases and in ECM turnover. MMP-26 can degrade ECM components and serve as an activator of other MMP enzymes. We further confirmed that increased levels and activation of MMP-8, -25, and -26 in GCF, PISF, and inflamed gingival tissue are associated with the severity of periodontal/peri-implant inflammation. We evaluated the role of MMP-8 in P. gingivalis-induced periodontitis by comparing MMP-8 knock-out (MMP8-/-) and wild-type mice. Surprisingly, MMP-8 significantly attenuated P. gingivalis-induced site-specific alveolar bone loss. We also evaluated systemic changes in serum immunoglobulin and lipoprotein profiles among these mouse groups. P. gingivalis infection increased HDL/VLDL particle size in the MMP-8-/- mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total LPS and IgG antibody levels were enhanced in both mice groups. P. gingivalis-induced periodontitis, especially in MMP-8-/- mice, is associated with severe alveolar bone loss and with systemic inflammatory and lipoprotein changes that are likely to be involved in early atherosclerosis.
Resumo:
Rab8 and its interacting proteins as regulators of cell polarization During the development of a multi-cellular organism, progenitor cells have to divide and migrate appropriately as well as organize their differentiation with one another, in order to produce a viable embryo. To divide, differentiate and migrate cells have to undergo polarization, a process where internal and external components such as actin, microtubules and adhesion receptors are reorganized to produce a cell that is asymmetric, with functionally different surfaces. Also in the adult organism there is a continuous need for these processes, as cells need to migrate in response to tissue damage and to fight infection. Improper regulation of cell proliferation and migration can conversely lead to disease such as cancer. GTP-binding proteins function as molecular switches by cycling between a GTP-bound (active) conformation and a GDP-bound (inactive) conformation. The Ras super-family of small GTPases are found in all eukaryotic cells. They can be functionally divided into five subfamilies. The Ras family members mainly regulate gene expression, controlling cell proliferation and differentiation. Ras was in fact the first human oncogene to be characterized, and as much as 30% of all human tumors may be directly or indirectly caused by mutations of Ras molecules The Rho family members mainly regulate cytoskeletal reorganization. Arf proteins are known to regulate vesicle budding and Rab proteins regulate vesicular transport. Ran regulates nuclear transport as well as microtubule organization during mitosis. The focus of the thesis of Katarina Hattula, is on Rab8, a small GTPase of the Rab family. Activated Rab8 has previously been shown to induce the formation of new surface extensions, reorganizing both actin and microtubules, and to have a role in directed membrane transport to cell surfaces. However, the exact membrane route it regulates has remained elusive. In the thesis three novel interactors of Rab8 are presented. Rabin8 is a Rab8-specific GEF that localizes to vesicles where it presumably recruits and activates its target Rab8. Its expression in cells leads to remodelling of actin and the formation of polarized cell surface domains. Optineurin, known to be associated with a leading cause of blindness in humans (open-angle glaucoma), is shown to interact specifically with GTP-bound Rab8. Rab8 binds to an amino-terminal region and interestingly, the Huntingtin protein binds a carboxy-terminal region of optineurin. (Aberrant Huntingtin protein is known to be the cause Huntington s disease in humans.) Co-expression of Huntingtin and optineurin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures. Furthermore, optineurin promoted cell polarization in a similar way to Rab8. A third novel interactor of Rab8 presented in this thesis is JFC1, a member of the synaptogamin-like protein (Slp) family. JFC1 interacts with Rab8 specifically in its GTP-bound form, co-localizes with endogenous Rab8 on tubular and vesicular structures, and is probably involved in controlling Rab8 membrane dynamics. Rab8 is in this thesis work clearly shown to have a strong effect on cell shape. Blocking Rab8 activity by expression of Rab8 RNAi, or by expressing the dominant negative Rab8 (T22N) mutant leads to loss of cell polarity. Conversely, cells expressing the constitutively active Rab8 (Q67L) mutant exhibit a strongly polarized phenotype. Experiments in live cells show that Rab8 is associated with macropinosomes generated at ruffling areas of the membrane. These macropinosomes fuse with or transform into tubules that move toward the cell centre, from where they are recycled back to the leading edge to participate in protrusion formation. The biogenesis of these tubules is shown to be dependent on both actin and microtubule dynamics. The Rab8-specific membrane route studied contained several markers known to be internalized and recycled (1 integrin, transferrin, transferrin receptor, cholera toxin B subunit (CTxB), and major histocompatibility complex class I protein (MHCI)). Co-expression studies revealed that Rab8 localization overlaps with that of Rab11 and Arf6. Rab8 is furthermore clearly functionally linked to Arf6. The data presented in this thesis strongly suggests a role for Rab8 as a regulator for a recycling compartment, which is involved in providing structural and regulatory components to the leading edge to participate in protrusion formation.
Resumo:
Human central nervous system (CNS) tumors are a heterogeneous group of tumors occurring in brain, brainstem and spinal cord. Malignant gliomas (astrocytic and oligodendroglial tumors), which arise from the neuroepithelial cells are the most common CNS neoplasms in human. Malignant gliomas are highly aggressive and invasive tumors, and have a very poor prognosis. The development and progression of gliomas involve a stepwise accumulation of genetic alterations that generally affect either signal transduction pathways activated by receptor tyrosine kinases (RTKs), or cell cycle arrest pathways. Constitutive activation or deregulated signaling by RTKs is caused by gene amplification, overexpression or mutations. The aberrant RTK signaling results in turn in the activation of several downstream pathways, which ultimately lead to malignant transformation and tumor proliferation. Many genetic abnormalities implicated in nervous system tumors involve the genes located at the chromosomal region 4q12. This locus harbors the receptor tyrosine kinases KIT, PDGFRA and VEGFR2, and other genes (REST, LNX1) with neural function. Gene amplification and protein expression of KIT, PDGFRA, and VEGFR2 was studied using clinical tumor material. REST and LNX1, as well as NUMBL, the interaction partner of LNX1, were studied for their gene mutations and amplifications. In our studies, amplification of LNX1 was associated with KIT and PDGFRA amplification in glioblastomas, and coamplification of KIT, PDGFRA and VEGFR2 was detected in medulloblastomas and CNS primitive neuroectodermal tumors. PDGFRA amplification was also correlated with poor overall survival. Coamplification of KIT, PDGFRA and VEGFR2 was observed in a subset of human astrocytic and oligodendroglial tumors. We suggest that genes at 4q12 could be a part of a larger amplified region, which is deregulated in gliomas, and could be used as a prognostic marker of tumorigenic process. The signaling pathways activated due to gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment. This study also includes the characterization of KIT overexpressing astrocytes, analyzed by various in vitro functional assays. Our results show that overexpression of KIT in mouse astrocytes promotes cell proliferation and anchorage-independent growth, as well as phenotypic changes in the cells. Furthermore, the increased proliferation is partly inhibited by imatinib, a small molecule inhibitor of KIT. These results suggest that KIT may play a role in astrocyte growth regulation, and might have an oncogenic role in brain tumorigenesis. Elucidation of the altered signaling pathways due to specific gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment.