16 resultados para Electrochemical mechanism

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The respiratory chain is found in the inner mitochondrial membrane of higher organisms and in the plasma membrane of many bacteria. It consists of several membrane-spanning enzymes, which conserve the energy that is liberated from the degradation of food molecules as an electrochemical proton gradient across the membrane. The proton gradient can later be utilized by the cell for different energy requiring processes, e.g. ATP production, cellular motion or active transport of ions. The difference in proton concentration between the two sides of the membrane is a result of the translocation of protons by the enzymes of the respiratory chain, from the negatively charged (N-side) to the positively charged side (P-side) of the lipid bilayer, against the proton concentration gradient. The endergonic proton transfer is driven by the flow of electrons through the enzymes of the respiratory chain, from low redox-potential electron donors to acceptors of higher potential, and ultimately to oxygen. Cytochrome c oxidase is the last enzyme in the respiratory chain and catalyzes the reduction of dioxygen to water. The redox reaction is coupled to proton transport across the membrane by a yet unresolved mechanism. Cytochrome c oxidase has two proton-conducting pathways through which protons are taken up to the interior part of the enzyme from the N-side of the membrane. The K-pathway transfers merely substrate protons, which are consumed in the process of water formation at the catalytic site. The D-pathway transfers both substrate protons and protons that are pumped to the P-side of the membrane. This thesis focuses on the role of two conserved amino acids in proton translocation by cytochrome c oxidase, glutamate 278 and tryptophan 164. Glu278 is located at the end of the D-pathway and is thought to constitute the branching point for substrate and pumped protons. In this work, it was shown that although Glu278 has an important role in the proton transfer mechanism, its presence is not an obligatory requirement. Alternative structural solutions in the area around Glu278, much like the ones present in some distantly related heme-copper oxidases, could in the absence of Glu278 support the formation of a long hydrogen-bonded water chain through which proton transfer from the D-pathway to the catalytic site is possible. The other studied amino acid, Trp164, is hydrogen bonded to the ∆-propionate of heme a3 of the catalytic site. Mutation of this amino acid showed that it may be involved in regulation of proton access to a proton acceptor, a pump site, from which the proton later is expelled to the P-side of the membrane. The ion pair that is formed by the ∆-propionate of heme a3 and arginine 473 is likely to form a gate-like structure, which regulates proton mobility to the P-side of the membrane. The same gate may also be part of an exit path through which water molecules produced at the catalytically active site are removed towards the external side of the membrane. Time-resolved optical and electrometrical experiments with the Trp164 to phenylalanine mutant revealed a so far undetected step in the proton pumping mechanism. During the A to PR transition of the catalytic cycle, a proton is transferred from Glu278 to the pump site, located somewhere in the vicinity of the ∆-propionate of heme a3. A mechanism for proton pumping by cytochrome c oxidase is proposed on the basis of the presented results and the mechanism is discussed in relation to some relevant experimental data. A common proton pumping mechanism for all members of the heme-copper oxidase family is moreover considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells of every living organism on our planet − bacterium, plant or animal − are organized in such a way that despite differences in structure and function they utilize the same metabolic energy represented by electrochemical proton gradient across a membrane. This gradient of protons is generated by the series of membrane bound multisubunit proteins, Complex I, II, III and IV, organized in so-called respiratory or electron transport chain. In the eukaryotic cell it locates in the inner mitochondrial membrane while in the bacterial cell it locates in the cytoplasmic membrane. The function of the respiratory chain is to accept electrons from NADH and ubiquinol and transfer them to oxygen resulting in the formation of water. The free energy released upon these redox reactions is converted by respiratory enzymes into an electrochemical proton gradient, which is used for synthesis of ATP as well as for many other energy dependent processes. This thesis is focused on studies of the first member of the respiratory chain − NADH:ubiquinone oxidoreductase or Complex I. This enzyme has a boot-shape structure with hydrophilic and hydrophobic domains, the former of which has all redox groups of the protein, the flavin and eight to nine iron-sulfur clusters. Complex I serves as a proton pump coupling transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the membrane. So far the mechanism of energy transduction by Complex I is unknown. In the present study we applied a set of different methods to study the electron and proton transfer reactions in Complex I from Escherichia coli. The main achievement was the experiment that showed that the electron transfer through the hydrophilic domain of Complex I is unlikely to be coupled to proton transfer directly or to conformational changes in the protein. In this work for the first time properties of all redox centers of Complex I were characterized in the intact purified bacterial enzyme. We also probed the role of several conserved amino acid residues in the electron transfer of Complex I. Finally, we found that highly conserved amino acid residues in several membrane subunits form a common pattern with a very prominent feature – the presence of a few lysines within the membrane. Based on the experimental data, we suggested a tentative principle which may govern the redox-coupled proton pumping in Complex I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy conversion by living organisms is central dogma of bioenergetics. The effectiveness of the energy extraction by aerobic organisms is much greater than by anaerobic ones. In aerobic organisms the final stage of energy conversion occurs in respiratory chain that is located in the inner membrane of mitochondria or cell membrane of some aerobic bacteria. The terminal complex of the respiratory chain is cytochrome c oxidase (CcO) - the subject of this study. The primary function of CcO is to reduce oxygen to water. For this, CcO accepts electrons from a small soluble enzyme cytochrome c from one side of the membrane and protons from another side. Moreover, CcO translocates protons across the membrane. Both oxygen reduction and proton translocation contributes to generation of transmembrane electrochemical gradient that is used for ATP synthesis and different types of work in the cell. Although the structure of CcO is defined with a relatively high atomic resolution (1.8 Å), its function can hardly be elucidated from the structure. The electron transfer route within CcO and its steps are very well defined. Meanwhile, the proton transfer roots were predicted from the site-specific mutagenesis and later proved by X-ray crystallography, however, the more strong proof of the players of the proton translocation machine is still required. In this work we developed new methods to study CcO function based on FTIR (Fourier Transform Infrared) spectroscopy. Mainly with use of these methods we answered several questions that were controversial for many years: [i] the donor of H+ for dioxygen bond splitting was identified and [ii] the protolytic transitions of Glu-278 one of the key amino acid in proton translocation mechanism was shown for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complexity of life is based on an effective energy transduction machinery, which has evolved during the last 3.5 billion years. In aerobic life, the utilization of the high oxidizing potential of molecular oxygen powers this machinery. Oxygen is safely reduced by a membrane bound enzyme, cytochrome c oxidase (CcO), to produce an electrochemical proton gradient over the mitochondrial or bacterial membrane. This gradient is used for energy-requiring reactions such as synthesis of ATP by F0F1-ATPase and active transport. In this thesis, the molecular mechanism by which CcO couples the oxygen reduction chemistry to proton-pumping has been studied by theoretical computer simulations. By building both classical and quantum mechanical model systems based on the X-ray structure of CcO from Bos taurus, the dynamics and energetics of the system were studied in different intermediate states of the enzyme. As a result of this work, a mechanism was suggested by which CcO can prevent protons from leaking backwards in proton-pumping. The use and activation of two proton conducting channels were also enlightened together with a mechanism by which CcO sorts the chemical protons from pumped protons. The latter problem is referred to as the gating mechanism of CcO, and has remained a challenge in the bioenergetics field for more than three decades. Furthermore, a new method for deriving charge parameters for classical simulations of complex metalloenzymes was developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terminal oxidases are the final proteins of the respiratory chain in eukaryotes and some bacteria. They catalyze most of the biological oxygen consumption on Earth done by aerobic organisms. During the catalytic reaction terminal oxidases reduce dioxygen to water and use the energy released in this process to maintain the electrochemical proton gradient by functioning as a redox-driven proton pump. This membrane gradient of protons is extremely important for cells as it is used for many cellular processes, such as transportation of substrates and ATP synthesis. Even though the structures of several terminal oxidases are known, they are not sufficient in themselves to explain the molecular mechanism of proton pumping. In this work we have applied a complex approach using a variety of different techniques to address the properties and the mechanism of proton translocation by the terminal oxidases. The combination of direct measurements of pH changes during catalytic turnover, time-resolved potentiometric electrometry and optical spectroscopy, made it possible to obtain valuable information about various aspects of oxidase functioning. We compared oxygen binding properties of terminal oxidases from the distinct heme-copper (CcO) and cytochrome bd families and found that cytochrome bd has a high affinity for oxygen, which is 3 orders of magnitude higher than that of CcO. Interestingly, the difference between CcO and cytochrome bd is not only in higher affinity of the latter to oxygen, but also in the way that each of these enzymes traps oxygen during catalysis. CcO traps oxygen kinetically - the molecule of bound dioxygen is rapidly reduced before it can dissociate. Alternatively, cytochrome bd employs an alternative mechanism of oxygen trapping - part of the redox energy is invested into tight oxygen binding, and the price paid for this is the lack of proton pumping. A single cycle of oxygen reduction to water is characterized by translocation of four protons across the membrane. Our results make it possible to assign the pumping steps to discrete transitions of the catalytic cycle and indicate that during in vivo turnover of the oxidase these four protons are transferred, one at a time, during the P→F, F→OH, Oh→Eh, and Eh→R transitions. At the same time, each individual proton translocation step in the catalytic cycle is not just a single reaction catalyzed by CcO, but rather a complicated sequence of interdependent electron and proton transfers. We assume that each single proton translocation cycle of CcO is assured by internal proton transfer from the conserved Glu-278 to an as yet unidentified pump site above the hemes. Delivery of a proton to the pump site serves as a driving reaction that forces the proton translocation cycle to continue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular motors are proteins that convert chemical energy into mechanical work. The viral packaging ATPase P4 is a hexameric molecular motor that translocates RNA into preformed viral capsids. P4 belongs to the ubiquitous class of hexameric helicases. Although its structure is known, the mechanism of RNA translocation remains elusive. Here we present a detailed kinetic study of nucleotide binding, hydrolysis, and product release by P4. We propose a stochastic-sequential cooperative model to describe the coordination of ATP hydrolysis within the hexamer. In this model the apparent cooperativity is a result of hydrolysis stimulation by ATP and RNA binding to neighboring subunits rather than cooperative nucleotide binding. Simultaneous interaction of neighboring subunits with RNA makes the otherwise random hydrolysis sequential and processive. Further, we use hydrogen/deuterium exchange detected by high resolution mass spectrometry to visualize P4 conformational dynamics during the catalytic cycle. Concerted changes of exchange kinetics reveal a cooperative unit that dynamically links ATP binding sites and the central RNA binding channel. The cooperative unit is compatible with the structure-based model in which translocation is effected by conformational changes of a limited protein region. Deuterium labeling also discloses the transition state associated with RNA loading which proceeds via opening of the hexameric ring. Hydrogen/deuterium exchange is further used to delineate the interactions of the P4 hexamer with the viral procapsid. P4 associates with the procapsid via its C-terminal face. The interactions stabilize subunit interfaces within the hexamer. The conformation of the virus-bound hexamer is more stable than the hexamer in solution, which is prone to spontaneous ring openings. We propose that the stabilization within the viral capsid increases the packaging processivity and confers selectivity during RNA loading. Finally, we use single molecule techniques to characterize P4 translocation along RNA. While the P4 hexamer encloses RNA topologically within the central channel, it diffuses randomly along the RNA. In the presence of ATP, unidirectional net movement is discernible in addition to the stochastic motion. The diffusion is hindered by activation energy barriers that depend on the nucleotide binding state. The results suggest that P4 employs an electrostatic clutch instead of cycling through stable, discrete, RNA binding states during translocation. Conformational changes coupled to ATP hydrolysis modify the electrostatic potential inside the central channel, which in turn biases RNA motion in one direction. Implications of the P4 model for other hexameric molecular motors are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parasitic wasps are one of the largest insect groups and their life histories are remarkably variable. Common to all parasitic wasps is that they kill their hosts, which are usually beetles, butterflies and sometimes spiders. Hosts are often at a larval or pupal stage and live in concealed conditions, such as in plant tissue. Parasitic wasps have two main ways of finding their host. 1) They can detect chemical compounds emitted by damaged plant material or released by larvae living in plant tissue, and 2) detect the larvae by sound vibrations. Even though pupae are immobile and silent, and therefore do not cause vibration, parasitoids have, however, adapted to find passive developmental stages by producing vibration themselves by knocking the substrate with their antennae, and then detecting the echoes with their legs. This echolocation allows a parasitoid to locate its potential hosts that are deeply buried in wood. This study focuses on the relationships of the subfamily Cryptinae (Hymenoptera: Ichneumonidae) and related taxa, and the evolution of host location mechanism. There are no earlier studies of the phylogeny of the Cryptinae, and the position of related taxa are unclear. According to the earlier classification, which is entirely intuitional, the Cryptinae is divided into three tribes: Cryptini, Hemigasterini and Phygadeuontini. Further, these tribes are subdiveded into numerous subtribes. This work, based on molecular characters, shows that the cryptine tribes Cryptini, Phygadeuon¬tini and Hemigasterini come out largely as monophyletic groups, thus agreeing with the earlier classification. The earlier subtribal classification had no support. In addition, it is shown that modified antennal structures are associated with host usage of wood-boring coleopteran hosts. The cryptines have a clear modification series on their antennal tips from a simply tip to a hammer-like structure. The species with strongly modified antennae belong mostly to the tribe Cryptini and they utilise wood-boring beetles as hosts. Also, field observations on insect behaviour support this result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to study the seismic tomography structure of the earth s crust together with earthquake distribution and mechanism beneath the central Fennoscandian Shield, mainly in southern and central Finland. The earthquake foci and some fault plane solutions are correlated with 3-D images of the velocity tomography. The results are discussed in relation to the stress field of the Shield and with other geophysical, e.g. geomagnetic, gravimetric, tectonic, and anisotropy studies of the Shield. The earthquake data of the Fennoscandian Shield has been extracted from the Nordic earthquake parameter data base which was founded at the time of inception of the earthquake catalogue for northern Europe. Eight earlier earthquake source mechanisms are included in a pilot study on creating a novel technique for calculating an earthquake fault plane solution. Altogether, eleven source mechanisms of shallow, weak earthquakes are related in the 3-D tomography model to trace stresses of the crust in southern and central Finland. The earthquakes in the eastern part of the Fennoscandian Shield represent low-active, intraplate seismicity. Earthquake mechanisms with NW-SE oriented horizontal compression confirm that the dominant stress field originates from the ridge-push force in the North Atlantic Ocean. Earthquakes accumulate in coastal areas, in intersections of tectonic lineaments, in main fault zones or are bordered by fault lines. The majority of Fennoscandian earthquakes concentrate on the south-western Shield in southern Norway and Sweden. Onwards, epicentres spread via the ridge of the Shield along the west-coast of the Gulf of Bothnia northwards along the Tornio River - Finnmark fault system to the Barents Sea, and branch out north-eastwards via the Kuusamo region to the White Sea Kola Peninsula faults. The local seismic tomographic method was applied to find the terrane distribution within the central parts of the Shield the Svecofennian Orogen. From 300 local explosions a total of 19765 crustal Pg- and Sg-wave arrival times were inverted to create independent 3-D Vp and Vs tomographic models, from which the Vp/Vs ratio was calculated. The 3-D structure of the crust is presented as a P-wave and for the first time as an S-wave velocity model, and also as a Vp/Vs-ratio model of the SVEKALAPKO area that covers 700x800 km2 in southern and central Finland. Also, some P-wave Moho-reflection data was interpolated to image the relief of the crust-mantle boundary (i.e. Moho). In the tomography model, the seismic velocities vary smoothly. The lateral variations are larger for Vp (dVp =0.7 km/s) than for Vs (dVs =0.4 km/s). The Vp/Vs ratio varies spatially more distinctly than P- and S-wave velocities, usually from 1.70 to 1.74 in the upper crust and from 1.72 to 1.78 in the lower crust. Schist belts and their continuations at depth are associated with lower velocities and lower Vp/Vs ratios than in the granitoid areas. The tomography modelling suggests that the Svecofennian Orogen was accreted from crustal blocks ranging in size from 100x100 km2 to 200x200 km2 in cross-sectional area. The intervening sedimentary belts have ca. 0.2 km/s lower P- and S-wave velocities and ca. 0.04 lower Vp/Vs ratios. Thus, the tomographic model supports the concept that the thick Svecofennian crust was accreted from several crustal terranes, some hidden, and that the crust was later modified by intra- and underplating. In conclusion, as a novel approach the earthquake focal mechanism and focal depth distribution is discussed in relation to the 3-D tomography model. The schist belts and the transformation zones between the high- and low-velocity anomaly blocks are characterized by deeper earthquakes than the granitoid areas where shallow events dominate. Although only a few focal mechanisms were solved for southern Finland, there is a trend towards strike-slip and oblique strike-slip movements inside schist areas. The normal dip-slip type earthquakes are typical in the seismically active Kuusamo district in the NE edge of the SVEKALAPKO area, where the Archean crust is ca. 15-20 km thinner than the Proterozoic Svecofennian crust. Two near vertical dip-slip mechanism earthquakes occurred in the NE-SW junction between the Central Finland Granitoid Complex and the Vyborg rapakivi batholith, where high Vp/Vs-ratio deep-set intrusion splits the southern Finland schist belt into two parts in the tomography model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This coincides with the declining developmental expression of the GluK1 subunit-containing KARs. However, the function of KARs during early development of the brain is poorly understood. The present study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play a central role in functional development of the hippocampal CA3-CA1 network. The study shows for the first time how concomitant pre- and postsynaptic KAR function contributes to development of CA3-CA1 circuitry by regulating transmitter release and interneuron excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a novel mechanism for silencing and unsilencing early synapses and thus shaping the early synaptic connectivity. The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells and interneurons are tonically activated by ambient glutamate and that they regulate glutamate release differentially, depending on target cell type. At synapses to pyramidal cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, at synapses to interneurons, tKARs facilitate glutamate release. On the network level these mechanisms act together upregulating activity of GABAergic microcircuits and promoting endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an instrumental role in the functional development of the hippocampal circuitry. The next step was to investigate the role of GluK1 -containing receptors in the regulation of interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum is markedly decreased during development. The shift involves tKARs that inhibit medium-duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. This promotes burst spiking of interneurons and thereby increases GABAergic activity in the network synergistically with the tKAR-mediated facilitation of their excitatory drive. During development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is dramatically increased due to decoupling tKAR activation and ImAHP modulation. These changes take place at the same time when the endogeneous network oscillations disappear. These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic transmission and thus gate the feedforward excitatory drive to the area CA1. Here presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. The present results shed new light on the mechanisms modulating the early network activity that paves the way for oscillations lying behind cognitive tasks such as learning and memory. Kainate receptor antagonists are already being developed for therapeutic use for instance against pain and migraine. Because of these modulatory actions, tKARs also represent an attractive candidate for therapeutic treatment of developmentally related complications such as learning disabilities.