45 resultados para Drug Costs
em Helda - Digital Repository of University of Helsinki
Resumo:
Rheumatoid arthritis (RA) and other chronic inflammatory joint diseases already begin to affect patients health-related quality of life (HRQoL) in the earliest phases of these diseases. In treatment of inflammatory joint diseases, the last two decades have seen new strategies and treatment options introduced. Treatment is started at an earlier phase; combinations of disease-modifying anti-rheumatic drugs (DMARDs) and corticosteroids are used; and in refractory cases new drugs such as tumour necrosis factor (TNF) inhibitors or other biologicals can be started. In patients with new referrals to the Department of Rheumatology of the Helsinki University Central Hospital, we evaluated the 15D and the Stanford Health Assessment Questionnaire (HAQ) results at baseline and approximately 8 months after their first visit. Altogether the analysis included 295 patients with various rheumatic diseases. The mean baseline 15D score (0.822, SD 0.114) was significantly lower than for the age-matched general population (0.903, SD 0.098). Patients with osteoarthritis (OA) and spondyloarthropathies (SPA) reported the poorest HRQoL. In patients with RA and reactive arthritis (ReA) the HRQoL improved in a statistically significant manner during the 8-month follow-up. In addition, a clinically important change appeared in patients with systemic rheumatic diseases. HAQ score improved significantly in patients with RA, arthralgia and fibromyalgia, and ReA. In a study of 97 RA patients treated either with etanercept or adalimumab, we assessed their HRQoL with the RAND 36-Item Health Survey 1.0 (RAND-36) questionnaire. We also analysed changes in clinical parameters and the HAQ. With etanercept and adalimumab, the values of all domains in the RAND-36 questionnaire increased during the first 3 months. The efficacy of each in improving HRQoL was statistically significant, and the drug effects were comparable. Compared to Finnish age- and sex-matched general population values, the HRQoL of the RA patients was significantly lower at baseline and, despite the improvement, remained lower also at follow-up. Our RA patients had long-standing and severe disease that can explain the low HRQoL also at follow-up. In a pharmacoeconomic study of patients treated with infliximab we evaluated medical and work disability costs for patients with chronic inflammatory joint disease during one year before and one year after institution of infliximab treatment. Clinical and economic data for 96 patients with different arthritis diagnoses showed, in all patients, significantly improved clinical and laboratory variables. However, the medical costs increased significantly during the second period by 12 015 (95% confidence interval, 6 496 to 18 076). Only a minimal decrease in work disability costs occurred mean decrease 130 (-1 268 to 1 072). In a study involving a switch from infliximab to etanercept, we investigated the clinical outcome in 49 patients with RA. Reasons for switching were in 42% failure to respond by American College of Rheumatology (ACR) 50% criteria; in 12% adverse event; and in 46% non-medical reasons although the patients had responded to infliximab. The Disease Activity Score with 28 joints examined (DAS28) allowed us to measure patients disease activity and compare outcome between groups based on the reason for switching. In the patients in whom infliximab was switched to etanercept for nonmedical reasons, etanercept continued to suppress disease activity effectively, and 1-year drug survival for etanercept was 77% (95% CI, 62 to 97). In patients in the infliximab failure and adverse event groups, DAS28 values improved significantly during etanercept therapy. However, the 1-year drug survival of etanercept was only 43% (95% CI, 26 to 70) and 50% (95% CI, 33 to 100), respectively. Although the HRQoL of patients with inflammatory joint diseases is significantly lower than that of the general population, use of early and aggressive treatment strategies including TNF-inhibitors can improve patients HRQoL effectively. Further research is needed in finding new treatment strategies for those patients who fail to respond or lose their response to TNF-inhibitors.
Resumo:
The feasibility of different modern analytical techniques for the mass spectrometric detection of anabolic androgenic steroids (AAS) in human urine was examined in order to enhance the prevalent analytics and to find reasonable strategies for effective sports drug testing. A comparative study of the sensitivity and specificity between gas chromatography (GC) combined with low (LRMS) and high resolution mass spectrometry (HRMS) in screening of AAS was carried out with four metabolites of methandienone. Measurements were done in selected ion monitoring mode with HRMS using a mass resolution of 5000. With HRMS the detection limits were considerably lower than with LRMS, enabling detection of steroids at low 0.2-0.5 ng/ml levels. However, also with HRMS, the biological background hampered the detection of some steroids. The applicability of liquid-phase microextraction (LPME) was studied with metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol. Factors affecting the extraction process were studied and a novel LPME method with in-fiber silylation was developed and validated for GC/MS analysis of the danazol metabolite. The method allowed precise, selective and sensitive analysis of the metabolite and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine without any other steps in sample preparation. Liquid chromatographic/tandem mass spectrometric (LC/MS/MS) methods utilizing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were developed and applied for detection of oxandrolone and metabolites of stanozolol and 4-chlorodehydromethyltestosterone in urine. All methods exhibited high sensitivity and specificity. ESI showed, however, the best applicability, and a LC/ESI-MS/MS method for routine screening of nine 17-alkyl-substituted AAS was thus developed enabling fast and precise measurement of all analytes with detection limits below 2 ng/ml. The potential of chemometrics to resolve complex GC/MS data was demonstrated with samples prepared for AAS screening. Acquired full scan spectral data (m/z 40-700) were processed by the OSCAR algorithm (Optimization by Stepwise Constraints of Alternating Regression). The deconvolution process was able to dig out from a GC/MS run more than the double number of components as compared with the number of visible chromatographic peaks. Severely overlapping components, as well as components hidden in the chromatographic background could be isolated successfully. All studied techniques proved to be useful analytical tools to improve detection of AAS in urine. Superiority of different procedures is, however, compound-dependent and different techniques complement each other.
Resumo:
Increasing attention has been focused on methods that deliver pharmacologically active compounds (e.g. drugs, peptides and proteins) in a controlled fashion, so that constant, sustained, site-specific or pulsatile action can be attained. Ion-exchange resins have been widely studied in medical and pharmaceutical applications, including controlled drug delivery, leading to commercialisation of some resin based formulations. Ion-exchangers provide an efficient means to adjust and control drug delivery, as the electrostatic interactions enable precise control of the ion-exchange process and, thus, a more uniform and accurate control of drug release compared to systems that are based only on physical interactions. Unlike the resins, only few studies have been reported on ion-exchange fibers in drug delivery. However, the ion-exchange fibers have many advantageous properties compared to the conventional ion-exchange resins, such as more efficient compound loading into and release from the ion-exchanger, easier incorporation of drug-sized compounds, enhanced control of the ion-exchange process, better mechanical, chemical and thermal stability, and good formulation properties, which make the fibers attractive materials for controlled drug delivery systems. In this study, the factors affecting the nature and strength of the binding/loading of drug-sized model compounds into the ion-exchange fibers was evaluated comprehensively and, moreover, the controllability of subsequent drug release/delivery from the fibers was assessed by modifying the conditions of external solutions. Also the feasibility of ion-exchange fibers for simultaneous delivery of two drugs in combination was studied by dual loading. Donnan theory and theoretical modelling were applied to gain mechanistic understanding on these factors. The experimental results imply that incorporation of model compounds into the ion-exchange fibers was attained mainly as a result of ionic bonding, with additional contribution of non-specific interactions. Increasing the ion-exchange capacity of the fiber or decreasing the valence of loaded compounds increased the molar loading, while more efficient release of the compounds was observed consistently at conditions where the valence or concentration of the extracting counter-ion was increased. Donnan theory was capable of fully interpreting the ion-exchange equilibria and the theoretical modelling supported precisely the experimental observations. The physico-chemical characteristics (lipophilicity, hydrogen bonding ability) of the model compounds and the framework of the fibrous ion-exchanger influenced the affinity of the drugs towards the fibers and may, thus, affect both drug loading and release. It was concluded that precisely controlled drug delivery may be tailored for each compound, in particularly, by choosing a suitable ion-exchange fiber and optimizing the delivery system to take into account the external conditions, also when delivering two drugs simultaneously.
Resumo:
Modern drug discovery gives rise to a great number of potential new therapeutic agents, but in some cases the efficient treatment of patient may not be achieved because the delivery of active compounds to the target site is insufficient. Thus, drug delivery is one of the major challenges in current pharmaceutical research. Numerous nanoparticle-based drug carriers, e.g. liposomes, have been developed for enhanced drug delivery and targeting. Drug targeting may enhance the efficiency of the treatment and, importantly, reduce unwanted side effects by decreasing drug distribution to non-target tissues. Liposomes are biocompatible lipid-based carriers that have been studied for drug delivery during the last 40 years. They can be functionalized with targeting ligands and sensing materials for triggered activation. In this study, various external signal-assisted liposomal delivery systems were developed. Signals can be used to modulate drug permeation or release from the liposome formulation, and they provide accurate control of time, place and rate of activation. The study involved three types of signals that were used to trigger drug permeation and release: electricity, heat and light. Electrical stimulus was utilized to enhance the permeation of liposomal DNA across the skin. Liposome/DNA complex-mediated transfections were performed in tight rat epidermal cell model. Various transfection media and current intensities were tested, and transfection efficiency was evaluated non-invasively by monitoring the concentration of secreted reporter protein in cell culture medium. Liposome/DNA complexes produced gene expression, but electrical stimulus did not enhance the transfection efficiency significantly. Heat-sensitive liposomal drug delivery system was developed by coating liposomes with biodegradable and thermosensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate polymer. Temperature-triggered liposome aggregation and contents release from liposomes were evaluated. The cloud point temperature (CP) of the polymer was set to 42 °C. Polymer-coated liposome aggregation and contents release were observed above CP of the polymer, while non-coated liposomes remained intact. Polymer precipitates above its CP and interacts with liposomal bilayers. It is likely that this induces permeabilization of the liposomal membrane and contents release. Light-sensitivity was introduced to liposomes by incorporation of small (< 5 nm) gold nanoparticles. Hydrophobic and hydrophilic gold nanoparticles were embedded in thermosensitive liposomes, and contents release was investigated upon UV light exposure. UV light-induced lipid phase transitions were examined with small angle X-ray scattering, and light-triggered contents release was shown also in human retinal pigment epithelial cell line. Gold nanoparticles absorb light energy and transfer it into heat, which induces phase transitions in liposomes and triggers the contents release. In conclusion, external signal-activated liposomes offer an advanced platform for numerous applications in drug delivery, particularly in the localized drug delivery. Drug release may be localized to the target site with triggering stimulus that results in better therapeutic response and less adverse effects. Triggering signal and mechanism of activation can be selected according to a specific application.
Resumo:
Poor pharmacokinetics is one of the reasons for the withdrawal of drug candidates from clinical trials. There is an urgent need for investigating in vitro ADME (absorption, distribution, metabolism and excretion) properties and recognising unsuitable drug candidates as early as possible in the drug development process. Current throughput of in vitro ADME profiling is insufficient because effective new synthesis techniques, such as drug design in silico and combinatorial synthesis, have vastly increased the number of drug candidates. Assay technologies for larger sets of compounds than are currently feasible are critically needed. The first part of this work focused on the evaluation of cocktail strategy in studies of drug permeability and metabolic stability. N-in-one liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods were developed and validated for the multiple component analysis of samples in cocktail experiments. Together, cocktail dosing and LC/MS/MS were found to form an effective tool for increasing throughput. First, cocktail dosing, i.e. the use of a mixture of many test compounds, was applied in permeability experiments with Caco-2 cell culture, which is a widely used in vitro model for small intestinal absorption. A cocktail of 7-10 reference compounds was successfully evaluated for standardization and routine testing of the performance of Caco-2 cell cultures. Secondly, cocktail strategy was used in metabolic stability studies of drugs with UGT isoenzymes, which are one of the most important phase II drug metabolizing enzymes. The study confirmed that the determination of intrinsic clearance (Clint) as a cocktail of seven substrates is possible. The LC/MS/MS methods that were developed were fast and reliable for the quantitative analysis of a heterogenous set of drugs from Caco-2 permeability experiments and the set of glucuronides from in vitro stability experiments. The performance of a new ionization technique, atmospheric pressure photoionization (APPI), was evaluated through comparison with electrospray ionization (ESI), where both techniques were used for the analysis of Caco-2 samples. Like ESI, also APPI proved to be a reliable technique for the analysis of Caco-2 samples and even more flexible than ESI because of the wider dynamic linear range. The second part of the experimental study focused on metabolite profiling. Different mass spectrometric instruments and commercially available software tools were investigated for profiling metabolites in urine and hepatocyte samples. All the instruments tested (triple quadrupole, quadrupole time-of-flight, ion trap) exhibited some good and some bad features in searching for and identifying of expected and non-expected metabolites. Although, current profiling software is helpful, it is still insufficient. Thus a time-consuming largely manual approach is still required for metabolite profiling from complex biological matrices.
Resumo:
Drug Analysis without Primary Reference Standards: Application of LC-TOFMS and LC-CLND to Biofluids and Seized Material Primary reference standards for new drugs, metabolites, designer drugs or rare substances may not be obtainable within a reasonable period of time or their availability may also be hindered by extensive administrative requirements. Standards are usually costly and may have a limited shelf life. Finally, many compounds are not available commercially and sometimes not at all. A new approach within forensic and clinical drug analysis involves substance identification based on accurate mass measurement by liquid chromatography coupled with time-of-flight mass spectrometry (LC-TOFMS) and quantification by LC coupled with chemiluminescence nitrogen detection (LC-CLND) possessing equimolar response to nitrogen. Formula-based identification relies on the fact that the accurate mass of an ion from a chemical compound corresponds to the elemental composition of that compound. Single-calibrant nitrogen based quantification is feasible with a nitrogen-specific detector since approximately 90% of drugs contain nitrogen. A method was developed for toxicological drug screening in 1 ml urine samples by LC-TOFMS. A large target database of exact monoisotopic masses was constructed, representing the elemental formulae of reference drugs and their metabolites. Identification was based on matching the sample component s measured parameters with those in the database, including accurate mass and retention time, if available. In addition, an algorithm for isotopic pattern match (SigmaFit) was applied. Differences in ion abundance in urine extracts did not affect the mass accuracy or the SigmaFit values. For routine screening practice, a mass tolerance of 10 ppm and a SigmaFit tolerance of 0.03 were established. Seized street drug samples were analysed instantly by LC-TOFMS and LC-CLND, using a dilute and shoot approach. In the quantitative analysis of amphetamine, heroin and cocaine findings, the mean relative difference between the results of LC-CLND and the reference methods was only 11%. In blood specimens, liquid-liquid extraction recoveries for basic lipophilic drugs were first established and the validity of the generic extraction recovery-corrected single-calibrant LC-CLND was then verified with proficiency test samples. The mean accuracy was 24% and 17% for plasma and whole blood samples, respectively, all results falling within the confidence range of the reference concentrations. Further, metabolic ratios for the opioid drug tramadol were determined in a pharmacogenetic study setting. Extraction recovery estimation, based on model compounds with similar physicochemical characteristics, produced clinically feasible results without reference standards.
Resumo:
Background. In Finland, the incidence of type 1 diabetes mellitus (T1DM) is the highest in the world, and it continues to increase steadily. No effective preventative interventions exist either for individuals at high risk or for the population as a whole. In addition to problems with daily lifelong insulin replacement therapy, T1DM patients with long-lasting disease suffer from various diabetes related complications. The complications can lead to severe impairments and reductions in functional capacity and quality of life and in the worst case they can be fatal. Longitudinal studies on the costs of T1DM are extremely rare, especially in Finland. Typically, in these studies, distinctions between the various types of diabetes have not been made, and costs have not been calculated separately for the sexes. Aims. The aim of this study was to describe inpatient hospital care and costs of inpatient care in a cohort of 5,166 T1DM patients by sex during 1973-1998 in Finland. Inpatient care and costs of care due to T1DM without complications, due to T1DM with complications and due to other causes were calculated separately. Material and Methods. The study population consisted of all Finnish T1DM patients diagnosed before the age of 18 years between January 1st in 1965 and December 31st in 1979 and derived from the Finnish population based T1DM register (N=5,120 in 1979 and N=4,701 in 1997). Data on hospitalisations were obtained from the Finnish Hospital Discharge Register. Results. In the early stages of T1DM, the majority of the use of inpatient care was due to the treatment of T1DM without complications. There were enormous increases in the use of inpatient care for certain complications when T1DM lasted longer (from 9.5 years to 16.5 years). For women, the yearly number of bed-days for renal complications increased 4.8-fold, for peripheral vascular disease 4.3-fold and for ophthalmic complications 2.5-fold. For men, the corresponding increases were as follows: 5-fold, 6.9-fold and 2.5-fold. The yearly bed-days for glaucoma increased 8-fold, nephropathy 7-fold and microangiopathy 6-fold in the total population. During these 7 years, the yearly numbers of bed-days for T1DM without complications dropped dramatically. The length of stay in inpatient care decreased notably, but hospital visits became more frequent when the length of duration of T1DM increased from 9.5 years to 16.5 years. The costs of treatments due to complications increased when T1DM lasted longer. Costs due to inpatient care of complications in the cohort 2.5-folded as duration of T1DM increased from 9.5 years to 16.5 years, while the total costs of inpatient care in the cohort dropped by 22% due to an 80% decrease in the costs of care of T1DM without complications. Treating complications of female patients was more expensive than treating complications of men when T1DM had lasted 9.5 years; the mean annual costs for inpatient care of a female diabetic (any cause) were 1,642 , and the yearly costs of care of complications were 237 . The corresponding yearly mean costs for a male patient were 1,198 and 167 . Treating complications of female patients was more expensive than that of male patients also when the duration of diabetes was 16.5 years, although the difference in average annual costs between sexes was somewhat smaller. Conclusions. In the early phases of T1DM, the treatment of T1DM without complications causes a considerable amount of hospital bed-days. The use of inpatient care due to complications of T1DM strongly increases with ageing of patients. The economic burden of inpatient care of T1DM is substantial.
Resumo:
Cells are packed with membrane structures, defining the inside and outside, and the different subcellular compartments. These membranes consisting mainly of phospholipids have a variety of functions in addition to providing a permeability barrier for various compounds. These functions involve cellular signaling, where lipids can act as second messengers, or direct regulation of membrane associating proteins. The first part of this study focuses on relating some of the physicochemical properties of membrane lipids to the association of drug compounds to membranes. A fluorescence based method is described allowing for determination of the membrane association of drugs. This method was subsequently applied to a novel drug, siramesine, previously shown to have anti-cancer activity. Siramesine was found to associate with anionic lipids. Especially interesting is its strong affinity for a second messenger lipid phosphatidic acid. This is the first example of a small molecule drug compound specifically interacting with a cellular lipid. Phosphatidic acid in cells is required for the activation of many signaling pathways mediating growth and proliferation. This provides an intriguing possibility for a simple molecular mechanism of the observed anti-cancer activity of siramesine. In the second part the thermal behavior and self assembly of charged and uncharged membrane assemblies was studied. Strong inter-lamellar co-operativity was observed for multilamellar DPPC vesicles using fluorescence techniques together with calorimetry. The commonly used membrane models, large unilamellar vesicles (LUV) and multilamellar vesicles (MLV) were found to possess different biophysical properties as interlamellar interactions of MLVs drive segregation of a pyrene labeled lipid analogue into clusters. The effect of a counter-ion lattice on the self assembly of a cationic gemini surfactant was studied. The presence of NaCl strongly influenced the thermal phase behavior of M-1 vesicles, causing formation of giant vesicles upon exceeding a phase transition temperature, followed by a subsequent transition into a more homogenous dispersion. Understanding the underlying biophysical aspects of cellular membranes is of fundamental importance as the complex picture of the structure and function of cells is evolving. Many of the cellular reactions take place on membranes and membranes are known to regulate the activity of many peripheral and intergral membrane associating proteins. From the point of view of drug design and gene technology, membranes can provide an interesting target for future development of drugs, but also a vehicle sensitive for environmental changes allowing for encapsulating drugs and targeting them to the desired site of action.
Resumo:
The characteristics of drug addiction include compulsive drug use despite negative consequences and re-occurring relapses, returns to drug use after a period of abstinence. Therefore, relapse prevention is one of the major challenges for the treatment of drug addiction. There are three main factors capable of inducing craving for drugs and triggering relapse long after cessation of drug use and dissipation of physical withdrawal signs: stress, re-exposure to the drug, and environmental stimuli (cues) that have been previously associated with drug use. The neurotransmitters dopamine and glutamate have been implicated in the modulation of drug-seeking behavior. The aim of this project was to examine the role of glutamatergic neurotransmission in relapse triggered by conditioned drug-associated stimuli. The focus was on clarifying whether relapse to drug seeking can be attenuated by blockade of glutamate receptors. In addition, as the nucleus accumbens has been proposed to participate in the modulation of drug-seeking behavior, the effects of glutamate receptor blockade in this brain structure on cue-induced relapse were investigated. The studies employed animals models in which rats were trained to press a lever in a test cage to obtain alcohol or intravenous cocaine. Drug availability was paired with distinct olfactory, auditory, or visual stimuli. This phase was followed by extinction training, during which lever presses did not result in the presentation of the drug or the drug-associated stimuli. Extinction training led to a gradual decrease in the number of lever presses during test sessions. Relapse was triggered by presenting the rats with the drug-associated stimuli in the absence of alcohol or cocaine. The drug-associated stimuli were alone capable of inducing resumption of lever pressing and maintaining this behavior during repeated testing. The number of lever presses during a session represented the intensity of drug-seeking and relapse behavior. The results suggest that glutamatergic neurotransmission is involved in the modulation of drug-seeking behavior. Both alcohol and cocaine relapse were attenuated by systemic pretreatment with glutamate receptor antagonists. However, differences were found in the ability of ionotropic AMPA/kainate and NMDA receptor antagonists to regulate drug-seeking behavior. The AMPA/kainate antagonists CNQX and NBQX, and L-701,324, an antagonist with affinity for the glycine site of the NMDA receptor, attenuated cue-induced drug seeking, whereas the competitive NMDA antagonist CGP39551 and the NMDA channel blocker MK-801 were without effect. MPEP, an antagonist at metabotropic mGlu5 glutamate receptors, also decreased drug seeking, but its administration was found to lead to conditioned suppression of behavior during subsequent treatment sessions, suggesting that MPEP may have undesirable side effects. The mGluR2/3 agonist LY379268 and the mGluR8 agonist (S)-3,4-DCPG decreased both cue-induced relapse to alcohol drinking and alcohol consumption. Control experiments showed however that administration of the agonists was accompanied by motor suppression limiting their usefulness. Administration of the AMPA/kainate antagonist CNQX, the NMDA antagonist D-AP5, and the mGluR5 antagonist MPEP into the nucleus accumbens resulted also in a decrease in drug-seeking behavior, suggesting that the nucleus accumbens is at least one of the anatomical sites regulating drug seeking and mediating the effects of glutamate receptor antagonists on this behavior.