9 resultados para C33 - Models with Panel Data
em Helda - Digital Repository of University of Helsinki
Resumo:
This work belongs to the field of computational high-energy physics (HEP). The key methods used in this thesis work to meet the challenges raised by the Large Hadron Collider (LHC) era experiments are object-orientation with software engineering, Monte Carlo simulation, the computer technology of clusters, and artificial neural networks. The first aspect discussed is the development of hadronic cascade models, used for the accurate simulation of medium-energy hadron-nucleus reactions, up to 10 GeV. These models are typically needed in hadronic calorimeter studies and in the estimation of radiation backgrounds. Various applications outside HEP include the medical field (such as hadron treatment simulations), space science (satellite shielding), and nuclear physics (spallation studies). Validation results are presented for several significant improvements released in Geant4 simulation tool, and the significance of the new models for computing in the Large Hadron Collider era is estimated. In particular, we estimate the ability of the Bertini cascade to simulate Compact Muon Solenoid (CMS) hadron calorimeter HCAL. LHC test beam activity has a tightly coupled cycle of simulation-to-data analysis. Typically, a Geant4 computer experiment is used to understand test beam measurements. Thus an another aspect of this thesis is a description of studies related to developing new CMS H2 test beam data analysis tools and performing data analysis on the basis of CMS Monte Carlo events. These events have been simulated in detail using Geant4 physics models, full CMS detector description, and event reconstruction. Using the ROOT data analysis framework we have developed an offline ANN-based approach to tag b-jets associated with heavy neutral Higgs particles, and we show that this kind of NN methodology can be successfully used to separate the Higgs signal from the background in the CMS experiment.
Resumo:
The problem of recovering information from measurement data has already been studied for a long time. In the beginning, the methods were mostly empirical, but already towards the end of the sixties Backus and Gilbert started the development of mathematical methods for the interpretation of geophysical data. The problem of recovering information about a physical phenomenon from measurement data is an inverse problem. Throughout this work, the statistical inversion method is used to obtain a solution. Assuming that the measurement vector is a realization of fractional Brownian motion, the goal is to retrieve the amplitude and the Hurst parameter. We prove that under some conditions, the solution of the discretized problem coincides with the solution of the corresponding continuous problem as the number of observations tends to infinity. The measurement data is usually noisy, and we assume the data to be the sum of two vectors: the trend and the noise. Both vectors are supposed to be realizations of fractional Brownian motions, and the goal is to retrieve their parameters using the statistical inversion method. We prove a partial uniqueness of the solution. Moreover, with the support of numerical simulations, we show that in certain cases the solution is reliable and the reconstruction of the trend vector is quite accurate.
Resumo:
This thesis studies binary time series models and their applications in empirical macroeconomics and finance. In addition to previously suggested models, new dynamic extensions are proposed to the static probit model commonly used in the previous literature. In particular, we are interested in probit models with an autoregressive model structure. In Chapter 2, the main objective is to compare the predictive performance of the static and dynamic probit models in forecasting the U.S. and German business cycle recession periods. Financial variables, such as interest rates and stock market returns, are used as predictive variables. The empirical results suggest that the recession periods are predictable and dynamic probit models, especially models with the autoregressive structure, outperform the static model. Chapter 3 proposes a Lagrange Multiplier (LM) test for the usefulness of the autoregressive structure of the probit model. The finite sample properties of the LM test are considered with simulation experiments. Results indicate that the two alternative LM test statistics have reasonable size and power in large samples. In small samples, a parametric bootstrap method is suggested to obtain approximately correct size. In Chapter 4, the predictive power of dynamic probit models in predicting the direction of stock market returns are examined. The novel idea is to use recession forecast (see Chapter 2) as a predictor of the stock return sign. The evidence suggests that the signs of the U.S. excess stock returns over the risk-free return are predictable both in and out of sample. The new "error correction" probit model yields the best forecasts and it also outperforms other predictive models, such as ARMAX models, in terms of statistical and economic goodness-of-fit measures. Chapter 5 generalizes the analysis of univariate models considered in Chapters 2 4 to the case of a bivariate model. A new bivariate autoregressive probit model is applied to predict the current state of the U.S. business cycle and growth rate cycle periods. Evidence of predictability of both cycle indicators is obtained and the bivariate model is found to outperform the univariate models in terms of predictive power.
Resumo:
This dissertation examines the short- and long-run impacts of timber prices and other factors affecting NIPF owners' timber harvesting and timber stocking decisions. The utility-based Faustmann model provides testable hypotheses of the exogenous variables retained in the timber supply analysis. The timber stock function, derived from a two-period biomass harvesting model, is estimated using a two-step GMM estimator based on balanced panel data from 1983 to 1991. Timber supply functions are estimated using a Tobit model adjusted for heteroscedasticity and nonnormality of errors based on panel data from 1994 to 1998. Results show that if specification analysis of the Tobit model is ignored, inconsistency and biasedness can have a marked effect on parameter estimates. The empirical results show that owner's age is the single most important factor determining timber stock; timber price is the single most important factor in harvesting decision. The results of the timber supply estimations can be interpreted using utility-based Faustmann model of a forest owner who values a growing timber in situ.
Resumo:
The general change in the population structure and its impacts on the forest ownership structure were investigated in the thesis. The research assumed that the structural change in society has an effect on the outlook of the non-industrial private forest ownership. The changes in the structure of society were mainly restricted to population, education and occupation structures. The migration of the rural population into cities was also taken into consideration. The structural changes both in society and the non-industrial private forest ownership were examined as phenomena and their development directions were investigated since the middle of the 1970s. It could be established that the changes in the structures were mainly of the same kind in society as in forest owner structure. The clearest similarities between the changes in population and forest owner structure could be found in an increased mean age, a decrease in the 18 to 39 age bracket, those without a degree and in the farmers' shares. Furthermore it could be stated that migration into cities had taken place among both the forest owners and the general population. The main part of the research was concentrated on estimating regression models that explain the non-industrial private forest ownership change by the structural change in the population. A panel data was gathered from population statistics and previous forest ownership research information. The panel contained the years 1990 and 1999. With the assistance of the panel data it was possible to estimate regression and fixed effects' models that explained the structural changes in the non-industrial private forest ownership by evolution in the whole population. In the use of the estimated models authorities' forecasts considering the population were exploited. Only a few of the estimated models were statistically significant. This could be explained due to lack of a larger panel data. In addition the structural change of the non-industrial forest ownership was forecasted by trends.
Resumo:
The objective was to measure productivity growth and its components in Finnish agriculture, especially in dairy farming. The objective was also to compare different methods and models - both parametric (stochastic frontier analysis) and non-parametric (data envelopment analysis) - in estimating the components of productivity growth and the sensitivity of results with respect to different approaches. The parametric approach was also applied in the investigation of various aspects of heterogeneity. A common feature of the first three of five articles is that they concentrate empirically on technical change, technical efficiency change and the scale effect, mainly on the basis of the decompositions of Malmquist productivity index. The last two articles explore an intermediate route between the Fisher and Malmquist productivity indices and develop a detailed but meaningful decomposition for the Fisher index, including also empirical applications. Distance functions play a central role in the decomposition of Malmquist and Fisher productivity indices. Three panel data sets from 1990s have been applied in the study. The common feature of all data used is that they cover the periods before and after Finnish EU accession. Another common feature is that the analysis mainly concentrates on dairy farms or their roughage production systems. Productivity growth on Finnish dairy farms was relatively slow in the 1990s: approximately one percent per year, independent of the method used. Despite considerable annual variation, productivity growth seems to have accelerated towards the end of the period. There was a slowdown in the mid-1990s at the time of EU accession. No clear immediate effects of EU accession with respect to technical efficiency could be observed. Technical change has been the main contributor to productivity growth on dairy farms. However, average technical efficiency often showed a declining trend, meaning that the deviations from the best practice frontier are increasing over time. This suggests different paths of adjustment at the farm level. However, different methods to some extent provide different results, especially for the sub-components of productivity growth. In most analyses on dairy farms the scale effect on productivity growth was minor. A positive scale effect would be important for improving the competitiveness of Finnish agriculture through increasing farm size. This small effect may also be related to the structure of agriculture and to the allocation of investments to specific groups of farms during the research period. The result may also indicate that the utilization of scale economies faces special constraints in Finnish conditions. However, the analysis of a sample of all types of farms suggested a more considerable scale effect than the analysis on dairy farms.
Resumo:
Whether a statistician wants to complement a probability model for observed data with a prior distribution and carry out fully probabilistic inference, or base the inference only on the likelihood function, may be a fundamental question in theory, but in practice it may well be of less importance if the likelihood contains much more information than the prior. Maximum likelihood inference can be justified as a Gaussian approximation at the posterior mode, using flat priors. However, in situations where parametric assumptions in standard statistical models would be too rigid, more flexible model formulation, combined with fully probabilistic inference, can be achieved using hierarchical Bayesian parametrization. This work includes five articles, all of which apply probability modeling under various problems involving incomplete observation. Three of the papers apply maximum likelihood estimation and two of them hierarchical Bayesian modeling. Because maximum likelihood may be presented as a special case of Bayesian inference, but not the other way round, in the introductory part of this work we present a framework for probability-based inference using only Bayesian concepts. We also re-derive some results presented in the original articles using the toolbox equipped herein, to show that they are also justifiable under this more general framework. Here the assumption of exchangeability and de Finetti's representation theorem are applied repeatedly for justifying the use of standard parametric probability models with conditionally independent likelihood contributions. It is argued that this same reasoning can be applied also under sampling from a finite population. The main emphasis here is in probability-based inference under incomplete observation due to study design. This is illustrated using a generic two-phase cohort sampling design as an example. The alternative approaches presented for analysis of such a design are full likelihood, which utilizes all observed information, and conditional likelihood, which is restricted to a completely observed set, conditioning on the rule that generated that set. Conditional likelihood inference is also applied for a joint analysis of prevalence and incidence data, a situation subject to both left censoring and left truncation. Other topics covered are model uncertainty and causal inference using posterior predictive distributions. We formulate a non-parametric monotonic regression model for one or more covariates and a Bayesian estimation procedure, and apply the model in the context of optimal sequential treatment regimes, demonstrating that inference based on posterior predictive distributions is feasible also in this case.
Resumo:
Topics in Spatial Econometrics — With Applications to House Prices Spatial effects in data occur when geographical closeness of observations influences the relation between the observations. When two points on a map are close to each other, the observed values on a variable at those points tend to be similar. The further away the two points are from each other, the less similar the observed values tend to be. Recent technical developments, geographical information systems (GIS) and global positioning systems (GPS) have brought about a renewed interest in spatial matters. For instance, it is possible to observe the exact location of an observation and combine it with other characteristics. Spatial econometrics integrates spatial aspects into econometric models and analysis. The thesis concentrates mainly on methodological issues, but the findings are illustrated by empirical studies on house price data. The thesis consists of an introductory chapter and four essays. The introductory chapter presents an overview of topics and problems in spatial econometrics. It discusses spatial effects, spatial weights matrices, especially k-nearest neighbours weights matrices, and various spatial econometric models, as well as estimation methods and inference. Further, the problem of omitted variables, a few computational and empirical aspects, the bootstrap procedure and the spatial J-test are presented. In addition, a discussion on hedonic house price models is included. In the first essay a comparison is made between spatial econometrics and time series analysis. By restricting the attention to unilateral spatial autoregressive processes, it is shown that a unilateral spatial autoregression, which enjoys similar properties as an autoregression with time series, can be defined. By an empirical study on house price data the second essay shows that it is possible to form coordinate-based, spatially autoregressive variables, which are at least to some extent able to replace the spatial structure in a spatial econometric model. In the third essay a strategy for specifying a k-nearest neighbours weights matrix by applying the spatial J-test is suggested, studied and demonstrated. In the final fourth essay the properties of the asymptotic spatial J-test are further examined. A simulation study shows that the spatial J-test can be used for distinguishing between general spatial models with different k-nearest neighbours weights matrices. A bootstrap spatial J-test is suggested to correct the size of the asymptotic test in small samples.
Resumo:
In the thesis we consider inference for cointegration in vector autoregressive (VAR) models. The thesis consists of an introduction and four papers. The first paper proposes a new test for cointegration in VAR models that is directly based on the eigenvalues of the least squares (LS) estimate of the autoregressive matrix. In the second paper we compare a small sample correction for the likelihood ratio (LR) test of cointegrating rank and the bootstrap. The simulation experiments show that the bootstrap works very well in practice and dominates the correction factor. The tests are applied to international stock prices data, and the .nite sample performance of the tests are investigated by simulating the data. The third paper studies the demand for money in Sweden 1970—2000 using the I(2) model. In the fourth paper we re-examine the evidence of cointegration between international stock prices. The paper shows that some of the previous empirical results can be explained by the small-sample bias and size distortion of Johansen’s LR tests for cointegration. In all papers we work with two data sets. The first data set is a Swedish money demand data set with observations on the money stock, the consumer price index, gross domestic product (GDP), the short-term interest rate and the long-term interest rate. The data are quarterly and the sample period is 1970(1)—2000(1). The second data set consists of month-end stock market index observations for Finland, France, Germany, Sweden, the United Kingdom and the United States from 1980(1) to 1997(2). Both data sets are typical of the sample sizes encountered in economic data, and the applications illustrate the usefulness of the models and tests discussed in the thesis.