30 resultados para 381.3
em Helda - Digital Repository of University of Helsinki
Resumo:
Aims. The beginning point of this research was confusion between studies claiming, that children mature Metalinguistic to read at 6-7 of age, and the fact, that in Montessori playschools children easily start writing and reading at age 3 to 5. Aim was also find out how conception of slow Metalinguistic development has started, and if there is some evidence of phoneme awareness of reading of young children in the field of research of reading. Aim was also seek evidence of the sensitive period of reading as Montessori described it. The research also wanted to turn up, if phoneme awareness only develops in children, who work with graphemes and with reading, or could it be found in children, who do not. The mean was to research how the Montessori reading material supports child’s Metalinguistic development, when child begins learning to read. The research plans to represent knowledge about how young children learn to write and read. Methods. Research performed in ordinary kindergarten and in Montessori playschool in Espoo. In kindergarten observed six children, age 3-4, at eight grapheme-rhyme sessions from January to April 2007, and conducting a test based on Chaney’s (1992) study of phoneme awareness of young children. In Montessori kindergarten were observed 17 children about their phoneme awareness and reading competition from January 2007 to March 2008. Their developments in reading were also measured three times from 1.9.07 to 20.3.08 with classification constructed for this study, loosely based on Chall’s (1983) reading stages. The Montessori reading material was analyzed about the influence they have to a child’s Metalinguistic development. This was done based to theory and its concepts from the field of research of reading; phoneme awareness, morphological, syntactical and semantic consciousness. Results and conclusions. Research proved that children 3-5 have naturally developed phoneme awareness. In kindergarten and in Montessori playschool children between 2 and 4 could do phoneme synthesis, and in the latter they also could do phoneme segmentation of words. Montessori reading material guided children gradually, except to read, also to observe and absorb Metalinguistic knowledge. Children learned to write and read. At the last evaluating day almost 50 % of children write and read clauses or stories, and 82 % could read at least words. Children can develop Metalinguistic awareness, while using the Montessori materials for learning to write and read. To reach literacy is easy for children because of their phoneme awareness.
Latent TGF-β binding proteins -3 and -4 : transcriptional control and extracellular matrix targeting
Resumo:
Extracellular matrix (ECM) is a complex network of various proteins and proteoglycans which provides tissues with structural strength and resilience. By harvesting signaling molecules like growth factors ECM has the capacity to control cellular functions including proliferation, differentiation and cell survival. Latent transforming growth factor β (TGF-β) binding proteins (LTBPs) associate fibrillar structures of the ECM and mediate the efficient secretion and ECM deposition of latent TGF-β. The current work was conducted to determine the regulatory regions of LTBP-3 and -4 genes to gain insight into their tissue-specific expression which also has impact on TGF-β biology. Furthermore, the current research aimed at defining the ECM targeting of the N-terminal variants of LTBP-4 (LTBP-4S and -4L), which is required to understand their functions in tissues and to gain insight into conditions in which TGF-β is activated. To characterize the regulatory regions of LTBP-3 and -4 genes in silico and functional promoter analysis techniques were employed. It was found that the expression of LTBP-4S and -4L are under control of two independent promoters. This finding was in accordance with the observed expression patterns of LTBP-4S and -4L in human tissues. All promoter regions characterized in this study were TATAless, GC-rich and highly conserved between human and mouse species. Putative binding sites for Sp1 and GATA family of transcription factors were recognized in all of these regulatory regions. It is possible that these transcription factors control the basal expression of LTBP-3 and -4 genes. Smad binding element was found within the LTBP-3 and -4S promoter regions, but it was not present in LTBP-4L promoter. Although this element important for TGF-β signaling was present in LTBP-4S promoter, TGF-β did not induce its transcriptional activity. LTBP-3 promoter activity and mRNA expression instead were stimulated by TGF-β1 in osteosarcoma cells. It was found that the stimulatory effect of TGF-β was mediated by Smad and Erk MAPK signaling pathways. The current work explored the ECM targeting of LTBP-4S and identified binding partners of this protein. It was found that the N-terminal end of LTBP-4S possesses fibronectin (FN) binding sites which are critical for its ECM targeting. FN deficient fibroblasts incorporated LTBP-4S into their ECM only after addition of exogenous FN. Furthermore, LTBP-4S was found to have heparin binding regions, of which the C-terminal binding site mediated fibroblast adhesion. Soluble heparin prevented the ECM association of LTBP-4S in fibroblast cultures. In the current work it was observed that there are significant differences in the secretion, processing and ECM targeting of LTBP-4S and -4L. Interestingly, it was observed that most of the secreted LTBP-4L was associated with latent TGF-β1, whereas LTBP-4S was mainly secreted as a free form from CHO cells. This thesis provides information on transcriptional regulation of LTBP-3 and -4 genes, which is required for the deeper understanding of their tissue-specific functions. Further, the current work elucidates the structural variability of LTBPs, which appears to have impact on secretion and ECM targeting of TGF-β. These findings may advance understanding the abnormal activation of TGF-β which is associated with connective tissue disorders and cancer.
Resumo:
The blood and lymphatic vascular systems are essential for life, but they may become harnessed for sinister purposes in pathological conditions. For example, tumors learn to grow a network of blood vessels (angiogenesis), securing a source of oxygen and nutrients for sustained growth. On the other hand, damage to the lymph nodes and the collecting lymphatic vessels may lead to lymphedema, a debilitating condition characterized by peripheral edema and susceptibility to infections. Promoting the growth of new lymphatic vessels (lymphangiogenesis) is an attractive approach to treat lymphedema patients. Angiopoietin-1 (Ang1), a ligand for the endothelial receptor tyrosine kinases Tie1 and Tie2. The Ang1/Tie2 pathway has previously been implicated in promoting endothelial stability and integrity of EC monolayers. The studies presented here elucidate a novel function for Ang1 as a lymphangiogenic factor. Ang1 is known to decrease the permeability of blood vessels, and could thus act as a more global antagonist of plasma leakage and tissue edema by promoting growth of lymphatic vessels and thereby facilitating removal of excess fluid and other plasma components from the interstitium. These findings reinforce the idea that Ang1 may have therapeutic value in conditions of tissue edema. VEGFR-3 is present on all endothelia during development, but in the adult its expression becomes restricted to the lymphatic endothelium. VEGF-C and VEGF-D are ligands for VEGFR-3, and potently promote lymphangiogenesis in adult tissues, with direct and remarkably specific effects on the lymphatic endothelium in adult tissues. The data presented here show that VEGF-C and VEGF-D therapy can restore collecting lymphatic vessels in a novel orthotopic model of breast cancer-related lymphedema. Furthermore, the study introduces a novel approach to improve VEGF-C/VEGF-D therapy by using engineered heparin-binding forms of VEGF-C, which induced the rapid formation of organized lymphatic vessels. Importantly, VEGF-C therapy also greatly improved the survival and integration of lymph node transplants. The combination of lymph node transplantation and VEGF-C therapy provides a basis for future therapy of lymphedema. In adults, VEGFR-3 expression is restricted to the lymphatic endothelium and the fenestrated endothelia of certain endocrine organs. These results show that VEGFR-3 is induced at the onset of angiogenesis in the tip cells that lead the formation of new vessel sprouts, providing a tumor-specific vascular target. VEGFR-3 acts downstream of VEGF/VEGFR-2 signals, but, once induced, can sustain angiogenesis when VEGFR-2 signaling is inhibited. The data presented here implicate VEGFR-3 as a novel regulator of sprouting angiogenesis along with its role in regulating lymphatic vessel growth. Targeting VEGFR-3 may provide added efficacy to currently available anti-angiogenic therapeutics, which typically target the VEGF/VEGFR-2 pathway.
Resumo:
Latent transforming growth factor-beta (TGF-beta) binding proteins (LTBPs) -1, -3 and -4 are ECM components whose major function is to augment the secretion and matrix targeting of TGF-beta, a multipotent cytokine. LTBP-2 does not bind small latent TGF-beta but has suggested functions as a structural protein in ECM microfibrils. In the current work we focused on analyzing possible adhesive functions of LTBP-2 as well as on characterizing the kinetics and regulation of LTBP-2 secretion and ECM deposition. We also explored the role of TGF-beta binding LTBPs in endothelial cells activated to mimic angiogenesis as well as in malignant mesothelioma. We found that, unlike most adherent cells, several melanoma cell lines efficiently adhered to purified recombinant LTBP-2. Further characterization revealed that the adhesion was mediated by alpha3beta1 and alpha6beta1 integrins. Heparin also inhibited the melanoma cell adhesion suggesting a role for heparan sulphate proteoglycans. LTBP-2 was also identified as a haptotactic substrate for melanoma cell migration. We used cultured human embryonic lung fibroblasts to analyze the temporal and spatial association of LTBP-2 into ECM. By We found that LTBP-2 was efficiently assembled to the ECM only in confluent cultures following the deposition of fibronectin (FN) and fibrillin-1. In early, subconfluent cultures it remained primarily in soluble form after secretion. LTBP-2 colocalized transiently with FN and fibrillin-1. Silencing of fibrillin-1 expression by lentiviral shRNAs profoundly disrupted the deposition of LTBP-2 indicating that the ECM association of LTBP-2 depends on a pre-formed fibrillin-1 network. Considering the established role of TGF-beta as a regulator of angiogenesis we induced morphological activation of endothelial cells by phorbol 12-myristate 13-acetate (PMA) and followed the fate of LTBP-1 in the endothelial ECM. This resulted in profound proteolytic processing of LTBP-1 and release of latent TGF-beta complexes from the ECM. The processing was coupled with increased activation of MT-MMPs and specific upregulation of MT1-MMP. The major role of MT1-MMP in the proteolysis of LTBP-1 was confirmed by suppressing the expression with lentivirally induced short-hairpin RNAs as well as by various metalloproteinases inhibitors. TGF-beta can promote tumorigenesis of malignant mesothelioma (MM), which is an aggressive tumor of the pleura with poor prognosis. TGF-beta activity was analyzed in a panel of MM tumors by immunohistochemical staining of phosphorylated Smad-2 (P-Smad2). The tumor cells were strongly positive for P-Smad2 whereas LTBP-1 immunoreactivity was abundant in the stroma, and there was a negative correlation between LTBP-1 and P-Smad2 staining. In addition, the high P-Smad2 immunoreactivity correlated with shorter survival of patients. mRNA analysis revealed that TGF-beta1 was the most highly expressed isoform in both normal human pleura and MM tissue. LTBP-1 and LTBP-3 were both abundantly expressed. LTBP-1 was the predominant isoform in established MM cell lines whereas the expression of LTBP-3 was high in control cells. Suppression of LTBP-3 expression by siRNAs resulted in increased TGF-beta activity in MM cell lines accompanied by decreased proliferation. Our results suggest that decreased expression of LTBP-3 in MM could alter the targeting of TGF-beta to the ECM and lead to its increased activation. The current work emphasizes the coordinated process of the assembly and appropriate targeting of LTBPs with distinct adhesive or cytokine harboring properties into the ECM. The hierarchical assembly may have implications in the modulation of signaling events during morphogenesis and tissue remodeling.
Resumo:
The circulatory system comprises the blood vascular system and the lymphatic vascular system. These two systems function in parallel. Blood vessels form a closed system that delivers oxygen and nutrients to the tissues and removes waste products from the tissues, while lymphatic vessels are blind-ended tubes that collect extravasated fluid and cells from the tissues and return them back to blood circulation. Development of blood and lymphatic vascular systems occurs in series. Blood vessels are formed via vasculogenesis and angiogenesis whereas lymphatic vessels develop via lymphangiogenesis, after the blood vascular system is already functional. Members of the vascular endothelial growth factor (VEGF) family are regulators of both angiogenesis and lymphangiogenesis, while members of the platelet-derived growth factor (PDGF) family are major mitogens for pericytes and smooth muscle cells and regulate formation of blood vessels. Vascular endothelial growth factor C (VEGF-C) is the major lymphatic growth factor and signaling through its receptor vascular endothelial growth factor receptor 3 (VEGFR-3) is sufficient for lymphangiogenesis in adults. We studied the role of VEGF-C in embryonic lymphangiogenesis and showed that VEGF-C is absolutely required for the formation of lymph sacs from embryonic veins. VEGFR-3 is also required for normal development of the blood vascular system during embryogenesis, as Vegfr3 knockout mice die at mid-gestation due to failure in remodeling of the blood vessels. We showed that sufficient VEGFR-3 signaling in the embryo proper is required for embryonic angiogenesis and in a dosage-sensitive manner for embryonic lymphangiogenesis. Importantly, mice deficient in both VEGFR-3 ligands, Vegfc and Vegfd, developed a normal blood vasculature, suggesting VEGF-C- and VEGF-D- independent functions for VEGFR-3 in the early embryo. Platelet-derived growth factor B (PDGF-B) signals via PDGFR-b and regulates formation of blood vessels by recruiting pericytes and smooth muscle cells around nascent endothelial tubes. We showed that PDGF-B fails to induce lymphangiogenesis when overexpressed in adult mouse skin using adenoviral vectors. However, mouse embryos lacking Pdgfb showed abnormal lymphatic vessels, suggesting that PDGF-B plays a role in lymphatic vessel maturation and separation from blood vessels during embryogenesis. Lymphatic vessels play a key role in immune surveillance, fat absorption and maintenance of fluid homeostasis in the body. However, lymphatic vessels are also involved in various diseases, such as lymphedema and tumor metastasis. These studies elucidate the basic mechanisms of embryonic lymphangiogenesis and add to the knowledge of lymphedema and tumor metastasis treatments by giving novel insights into how lymphatic vessel growth could be induced (in lymphedema) or inhibited (in tumor metastasis).
Resumo:
The study focuses on the potential roles of the brick making industries in Sudan in deforestation and greenhouse gas emission due to the consumption of biofuels. The results were based on the observation of 25 brick making industries from three administrative regions in Sudan namely, Khartoum, Kassala and Gezira. The methodological approach followed the procedures outlined by the Intergovernmental Panel on Climate Change (IPCC). For predicting a serious deforestation scenario, it was also assumed that all of wood use for this particular purpose is from unsustainable sources. The study revealed that the total annual quantity of fuelwood consumed by the surveyed brick making industries (25) was 2,381 t dm. Accordingly, the observed total potential deforested wood was 10,624 m3, in which the total deforested round wood was 3,664 m3 and deforested branches was 6,961 m3. The study observed that a total of 2,990 t biomass fuels (fuelwood and dung cake) consumed annually by the surveyed brick making industries for brick burning. Consequently, estimated total annual emissions of greenhouse gases were 4,832 t CO2, 21 t CH4, 184 t CO, 0.15 t N20, 5 t NOX and 3.5 t NO while the total carbon released in the atmosphere was 1,318 t. Altogether, the total annual greenhouse gases emissions from biomass fuels burning was 5,046 t; of which 4,104 t from fuelwood and 943 t from dung cake burning. According to the results, due to the consumption of fuelwood in the brick making industries (3,450 units) of Sudan, the amount of wood lost from the total growing stock of wood in forests and trees in Sudan annually would be 1,466,000 m3 encompassing 505,000 m3 round wood and 961,000 m3 branches annually. By considering all categories of biofuels (fuelwood and dung cake), it was estimated that, the total emissions from all the brick making industries of Sudan would be 663,000 t CO2, 2,900 t CH4, 25,300 t CO, 20 t N2O, 720 t NOX and 470 t NO per annum, while the total carbon released in the atmosphere would be 181,000 t annually.
Resumo:
The structures of (1→3),(1→4)-β-D-glucans of oat bran, whole-grain oats and barley and processed foods were analysed. Various methods of hydrolysis of β-glucan, the content of insoluble fibre of whole grains of oats and barley and the solution behaviour of oat and barley β-glucans were studied. The isolated soluble β-glucans of oat bran and whole-grain oats and barley were hydrolysed with lichenase, an enzyme specific for (1→3),(1→4)-β-D-β-glucans. The amounts of oligosaccharides produced from bran were analysed with capillary electrophoresis and those from whole-grains with high-performance anion-exchange chromatography with pulse-amperometric detection. The main products were 3-O-β-cellobiosyl-D-glucose and 3-O-β-cellotriosyl-D-glucose, the oligosaccharides which have a degree of polymerisation denoted by DP3 and DP4. Small differences were detected between soluble and insoluble β-glucans and also between β-glucans of oats and barley. These differences can only be seen in the DP3:DP4 ratio which was higher for barley than for oat and also higher for insoluble than for soluble β-glucan. A greater proportion of barley β-glucan remained insoluble than of oat β-glucan. The molar masses of soluble β-glucans of oats and barley were the same as were those of insoluble β-glucans of oats and barley. To analyse the effects of cooking, baking, fermentation and drying, β-glucan was isolated from porridge, bread and fermentate and also from their starting materials. More β-glucan was released after cooking and less after baking. Drying decreased the extractability for bread and fermentate but increased it for porridge. Different hydrolysis methods of β-glucan were compared. Acid hydrolysis and the modified AOAC method gave similar results. The results of hydrolysis with lichenase gave higher recoveries than the other two. The combination of lichenase hydrolysis and high-performance anion-exchange chromatography with pulse-amperometric detection was found best for the analysis of β-glucan content. The content of insoluble fibre was higher for barley than for oats and the amount of β-glucan in the insoluble fibre fraction was higher for oats than for barley. The flow properties of both water and aqueous cuoxam solutions of oat and barley β-glucans were studied. Shear thinning was stronger for the water solutions of oat β-glucan than for barley β-glucan. In aqueous cuoxam shear thinning was not observed at the same concentration as in water but only with high concentration solutions. Then the viscosity of barley β-glucan was slightly higher than that of oat β-glucan. The oscillatory measurements showed that the crossover point of the G´ and G´´ curves was much lower for barley β-glucan than for oat β-glucan indicating a higher tendency towards solid-like behaviour for barley β-glucan than for oat β-glucan.
Resumo:
Breast cancer is the most common cancer in women in Western countries. In the early stages of development most breast cancers are hormone-dependent, and estrogens, especially estradiol, have a pivotal role in their development and progression. One approach to the treatment of hormone-dependent breast cancers is to block the formation of the active estrogens by inhibiting the action of the steroid metabolising enzymes. 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is a key enzyme in the biosynthesis of estradiol, the most potent female sex hormone. The 17beta-HSD1 enzyme catalyses the final step and converts estrone into the biologically active estradiol. Blocking 17beta-HSD1 activity with a specific enzyme inhibitor could provide a means to reduce circulating and tumour estradiol levels and thus promote tumour regression. In recent years 17beta-HSD1 has been recognised as an important drug target. Some inhibitors of 17beta-HSD1 have been reported, however, there are no inhibitors on the market nor have clinical trials been announced. The majority of known 17beta-HSD1 inhibitors are based on steroidal structures, while relatively little has been reported on non-steroidal inhibitors. As compared with 17beta-HSD1 inhibitors based on steroidal structures, non-steroidal compounds could have advantages of synthetic accessibility, drug-likeness, selectivity and non-estrogenicity. This study describes the synthesis of large group of novel 17beta-HSD1 inhibitors based on a non-steroidal thieno[2,3-d]pyrimidin-4(3H)-one core. An efficient synthesis route was developed for the lead compound and subsequently employed in the synthesis of thieno[2,3-d]pyrimidin-4(3H)-one based molecule library. The biological activities and binding of these inhibitors to 17beta-HSD1 and, finally, the quantitative structure activity relationship (QSAR) model are also reported. In this study, several potent and selective 17beta-HSD1 inhibitors without estrogenic activity were identified. This establishment of a novel class of inhibitors is a progressive achievement in 17beta-HSD1 inhibitor development. Furthermore, the 3D-QSAR model, constructed on the basis of this study, offers a powerful tool for future 17beta-HSD1 inhibitor development. As part of the fundamental science underpinning this research, the chemical reactivity of fused (di)cycloalkeno thieno[2,3-d]pyrimidin-4(3H)-ones with electrophilic reagents, i.e. Vilsmeier reagent and dimethylformamide dimethylacetal, was investigated. These findings resulted in a revision of the reaction mechanism of Vilsmeier haloformylation and further contributed to understanding the chemical reactivity of this compound class. This study revealed that the reactivity is dependent upon a stereoelectronic effect arising from different ring conformations.
Resumo:
Environmentally benign and economical methods for the preparation of industrially important hydroxy acids and diacids were developed. The carboxylic acids, used in polyesters, alkyd resins, and polyamides, were obtained by the oxidation of the corresponding alcohols with hydrogen peroxide or air catalyzed by sodium tungstate or supported noble metals. These oxidations were carried out using water as a solvent. The alcohols are also a useful alternative to the conventional reactants, hydroxyaldehydes and cycloalkanes. The oxidation of 2,2-disubstituted propane-1,3-diols with hydrogen peroxide catalyzed by sodium tungstate afforded 2,2-disubstituted 3-hydroxypropanoic acids and 1,1-disubstituted ethane-1,2-diols as products. A computational study of the Baeyer-Villiger rearrangement of the intermediate 2,2-disubstituted 3-hydroxypropanals gave in-depth data of the mechanism of the reaction. Linear primary diols having chain length of at least six carbons were easily oxidized with hydrogen peroxide to linear dicarboxylic acids catalyzed by sodium tungstate. The Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols and linear primary diols afforded the highest yield of the corresponding hydroxy acids, while the Pt, Bi/C catalyzed oxidation of the diols afforded the highest yield of the corresponding diacids. The mechanism of the promoted oxidation was best described by the ensemble effect, and by the formation of a complex of the hydroxy and the carboxy groups of the hydroxy acids with bismuth atoms. The Pt, Bi/C catalyzed air oxidation of 2-substituted 2-hydroxymethylpropane-1,3-diols gave 2-substituted malonic acids by the decarboxylation of the corresponding triacids. Activated carbon was the best support and bismuth the most efficient promoter in the air oxidation of 2,2-dialkylpropane-1,3-diols to diacids. In oxidations carried out in organic solvents barium sulfate could be a valuable alternative to activated carbon as a non-flammable support. In the Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols to 2,2-disubstituted 3-hydroxypropanoic acids the small size of the 2-substituents enhanced the rate of the oxidation. When the potential of platinum of the catalyst was not controlled, the highest yield of the diacids in the Pt, Bi/C catalyzed air oxidation of 2,2-dialkylpropane-1,3-diols was obtained in the regime of mass transfer. The most favorable pH of the reaction mixture of the promoted oxidation was 10. The reaction temperature of 40°C prevented the decarboxylation of the diacids.
Resumo:
The thesis consists of five international congress papers and a summary with an introduction. The overarching aim of the studies and the summary is to examine the inner coherency of the theological and anthropological thinking of Gregory of Nyssa (331-395). To the issue is applied an "apophatic approach" with a "Christological focus". It is suggested that the coherency is to be found from the Christological concept of unity between "true God" and "true man" in the one person of Jesus Christ. Gregory is among the first to make a full recognition of two natures of Christ, and to use this recognition systematically in his writings. The aim of the studies is pursued by the method of "identification", a combination of the modern critical "problematic method" and Gregory's own aphairetic method of "following" (akolouthia). The preoccupation with issues relating to the so-called Hellenization of Christianity in the patristic era was strong in the twentieth-century Gregory scholarship. The most discussed questions have been the Greek influence in his thought and his philosophical sources. In the five articles of the thesis it is examined how Gregory's thinking stands in its own right. The manifestly apophatic character of his theological thinking is made a part of the method of examining his thought according to the principles of his own method of following. The basic issue concerning the relation of theology and anthropology is discussed in the contexts of his central Trinitarian, anhtropological, Christological and eschatological sources. In the summary the Christocentric integration of Gregory's thinking is discussed also in relation to the issue of the alledged Hellenization. The main conclusion of the thesis concerns the concept of theology in Gregory. It is not indebted to the classical concept of theology as metaphysics or human speculation of God. Instead, it is founded to the traditional Judeo-Christian idea of God who speaks with his people face to face. In Gregory, theologia connotes the oikonomia of God's self-revelation. It may be regarded as the state of constant expression of love between the Creator and his created image. In theology, the human person becomes an image of the Word by which the Father expresses his love to "man" whom he loves as his own Son. Eventually the whole humankind, as one, gives the divine Word a physical - audible and sensible - Body. Humankind then becomes what theology is. The whole humanity expresses divine love by manifesting Christ in words and deeds, singing in one voice to the glory of the Father, the Son and the Holy Spirit.
Resumo:
Previous scholarship has often maintained that the Gospel of Philip is a collection of Valentinian teachings. In the present study, however, the text is read as a whole and placed into a broader context by searching for parallels from other early Christian texts. Although the Valentinian Christian identity of the Gospel of Philip is not questioned, it is read alongside those texts traditionally labelled as "mainstream Christian". It is obvious from the account of Irenaeus that the boundaries between the Valentinians and other Christians were not as clear or fixed as he probably would have hoped. This study analyzes the Valentinian Christian Gospel of Philip from two points of view: how the text constructs the Christian identity and what kind of Christianity it exemplifies. Firstly, it is observed how the author of the Gospel of Philip places himself and his Christian readers among the early Christianities of the period by emphasizing the common history and Christian features but building especially on particular texts and traditions. Secondly, it is noted how the Christian nature of an individual develops according to the Gospel of Philip. The identity of an individual is built and strengthened through rituals, experiences and teaching. Thirdly, the categorizations, attributes, beliefs and behaviour associated on the one hand with the "insiders", the true Christians, and, on the other, with outsiders in the Gospel of Philip, are analyzed using social identity theory the insiders and outsiders are described through stereotyping in the text. Overall, the study implies that the Gospel of Philip strongly emphasizes spiritual progress and transformation. Rather than depicting the Valentinians as the perfect Christians, it underlines their need for constant change and improvement. Although the author seeks to clearly distinguish the insiders from the outsiders, the boundaries of the categories are in fact fluid in the Gospel of Philip. Outsiders can become insiders and the insiders are also in danger of falling out again.