101 resultados para Polyphosphate-accumulating Organisms
Resumo:
Terminal oxidases are the final proteins of the respiratory chain in eukaryotes and some bacteria. They catalyze most of the biological oxygen consumption on Earth done by aerobic organisms. During the catalytic reaction terminal oxidases reduce dioxygen to water and use the energy released in this process to maintain the electrochemical proton gradient by functioning as a redox-driven proton pump. This membrane gradient of protons is extremely important for cells as it is used for many cellular processes, such as transportation of substrates and ATP synthesis. Even though the structures of several terminal oxidases are known, they are not sufficient in themselves to explain the molecular mechanism of proton pumping. In this work we have applied a complex approach using a variety of different techniques to address the properties and the mechanism of proton translocation by the terminal oxidases. The combination of direct measurements of pH changes during catalytic turnover, time-resolved potentiometric electrometry and optical spectroscopy, made it possible to obtain valuable information about various aspects of oxidase functioning. We compared oxygen binding properties of terminal oxidases from the distinct heme-copper (CcO) and cytochrome bd families and found that cytochrome bd has a high affinity for oxygen, which is 3 orders of magnitude higher than that of CcO. Interestingly, the difference between CcO and cytochrome bd is not only in higher affinity of the latter to oxygen, but also in the way that each of these enzymes traps oxygen during catalysis. CcO traps oxygen kinetically - the molecule of bound dioxygen is rapidly reduced before it can dissociate. Alternatively, cytochrome bd employs an alternative mechanism of oxygen trapping - part of the redox energy is invested into tight oxygen binding, and the price paid for this is the lack of proton pumping. A single cycle of oxygen reduction to water is characterized by translocation of four protons across the membrane. Our results make it possible to assign the pumping steps to discrete transitions of the catalytic cycle and indicate that during in vivo turnover of the oxidase these four protons are transferred, one at a time, during the P→F, F→OH, Oh→Eh, and Eh→R transitions. At the same time, each individual proton translocation step in the catalytic cycle is not just a single reaction catalyzed by CcO, but rather a complicated sequence of interdependent electron and proton transfers. We assume that each single proton translocation cycle of CcO is assured by internal proton transfer from the conserved Glu-278 to an as yet unidentified pump site above the hemes. Delivery of a proton to the pump site serves as a driving reaction that forces the proton translocation cycle to continue.
Resumo:
Nitrogen (N) and phosphorus (P) are essential elements for all living organisms. However, in excess, they contribute to several environmental problems such as aquatic and terrestrial eutrophication. Globally, human action has multiplied the volume of N and P cycling since the onset of industrialization. The multiplication is a result of intensified agriculture, increased energy consumption and population growth. Industrial ecology (IE) is a discipline, in which human interaction with the ecosystems is investigated using a systems analytical approach. The main idea behind IE is that industrial systems resemble ecosystems, and, like them, industrial systems can then be described using material, energy and information flows and stocks. Industrial systems are dependent on the resources provided by the biosphere, and these two cannot be separated from each other. When studying substance flows, the aims of the research from the viewpoint of IE can be, for instance, to elucidate the ways how the cycles of a certain substance could be more closed and how the flows of a certain substance could be decreased per unit of production (= dematerialization). In Finland, N and P are studied widely in different ecosystems and environmental emissions. A holistic picture comparing different societal systems is, however, lacking. In this thesis, flows of N and P were examined in Finland using substance flow analysis (SFA) in the following four subsystems: I) forest industry and use of wood fuels, II) food production and consumption, III) energy, and IV) municipal waste. A detailed analysis at the end of the 1990s was performed. Furthermore, historical development of the N and P flows was investigated in the energy system (III) and the municipal waste system (IV). The main research sources were official statistics, literature, monitoring data, and expert knowledge. The aim was to identify and quantify the main flows of N and P in Finland in the four subsystems studied. Furthermore, the aim was to elucidate whether the nutrient systems are cyclic or linear, and to identify how these systems could be more efficient in the use and cycling of N and P. A final aim was to discuss how this type of an analysis can be used to support decision-making on environmental problems and solutions. Of the four subsystems, the food production and consumption system and the energy system created the largest N flows in Finland. For the creation of P flows, the food production and consumption system (Paper II) was clearly the largest, followed by the forest industry and use of wood fuels and the energy system. The contribution of Finland to N and P flows on a global scale is low, but when compared on a per capita basis, we are one of the largest producers of these flows, with relatively high energy and meat consumption being the main reasons. Analysis revealed the openness of all four systems. The openness is due to the high degree of internationality of the Finnish markets, the large-scale use of synthetic fertilizers and energy resources and the low recycling rate of many waste fractions. Reduction in the use of fuels and synthetic fertilizers, reorganization of the structure of energy production, reduced human intake of nutrients and technological development are crucial in diminishing the N and P flows. To enhance nutrient recycling and replace inorganic fertilizers, recycling of such wastes as wood ash and sludge could be promoted. SFA is not usually sufficiently detailed to allow specific recommendations for decision-making to be made, but it does yield useful information about the relative magnitude of the flows and may reveal unexpected losses. Sustainable development is a widely accepted target for all human action. SFA is one method that can help to analyse how effective different efforts are in leading to a more sustainable society. SFA's strength is that it allows a holistic picture of different natural and societal systems to be drawn. Furthermore, when the environmental impact of a certain flow is known, the method can be used to prioritize environmental policy efforts.
Resumo:
One of the main aims of evolutionary biology is to explain why organisms vary phenotypically as they do. Proximately, this variation arises from genetic differences and from environmental influences, the latter of which is referred to as phenotypic plasticity. Phenotypic plasticity is thus a central concept in evolutionary biology, and understanding its relative importance in causing the phenotypic variation and differentiation is important, for instance in anticipating the consequences of human induced environmental changes. The aim of this thesis was to study geographic variation and local adaptation, as well as sex ratios and environmental sex reversal, in the common frog (Rana temporaria). These themes cover three different aspects of phenotypic plasticity, which emerges as the central concept for the thesis. The first two chapters address geographic variation and local adaptation in two potentially thermally adaptive traits, namely the degree of melanism and the relative leg length. The results show that although there is an increasing latitudinal trend in the degree of melanism in wild populations across Scandinavian Peninsula, this cline has no direct genetic basis and is thus environmentally induced. The second chapter demonstrates that although there is no linear, latitudinally ordered phenotypic trend in relative leg length that would be expected under Allen s rule an ecogeographical rule linking extremity length to climatic conditions there seems to be such a trend at the genetic level, hidden under environmental effects. The first two chapters thus view phenotypic plasticity through its ecological role and evolution, and demonstrate that it can both give rise to phenotypic variation and hide evolutionary patterns in studies that focus solely on phenotypes. The last three chapters relate to phenotypic plasticity through its ecological and evolutionary role in sex determination, and consequent effects on population sex ratio, genetic recombination and the evolution of sex chromosomes. The results show that while sex ratios are strongly female biased and there is evidence of environmental sex reversals, these reversals are unlikely to have caused the sex ratio skew, at least directly. The results demonstrate that environmental sex reversal can have an effect on the evolution of sex chromosomes, as the recombination patterns between them seem to be controlled by phenotypic, rather than genetic, sex. This potentially allows Y chromosomes to recombine, lending support for the recent hypothesis suggesting that sex-reversal may play an important role on the rejuvenation of Y chromosomes.
Resumo:
The increase in global temperature has been attributed to increased atmospheric concentrations of greenhouse gases (GHG), mainly that of CO2. The threat of severe and complex socio-economic and ecological implications of climate change have initiated an international process that aims to reduce emissions, to increase C sinks, and to protect existing C reservoirs. The famous Kyoto protocol is an offspring of this process. The Kyoto protocol and its accords state that signatory countries need to monitor their forest C pools, and to follow the guidelines set by the IPCC in the preparation, reporting and quality assessment of the C pool change estimates. The aims of this thesis were i) to estimate the changes in carbon stocks vegetation and soil in the forests in Finnish forests from 1922 to 2004, ii) to evaluate the applied methodology by using empirical data, iii) to assess the reliability of the estimates by means of uncertainty analysis, iv) to assess the effect of forest C sinks on the reliability of the entire national GHG inventory, and finally, v) to present an application of model-based stratification to a large-scale sampling design of soil C stock changes. The applied methodology builds on the forest inventory measured data (or modelled stand data), and uses statistical modelling to predict biomasses and litter productions, as well as a dynamic soil C model to predict the decomposition of litter. The mean vegetation C sink of Finnish forests from 1922 to 2004 was 3.3 Tg C a-1, and in soil was 0.7 Tg C a-1. Soil is slowly accumulating C as a consequence of increased growing stock and unsaturated soil C stocks in relation to current detritus input to soil that is higher than in the beginning of the period. Annual estimates of vegetation and soil C stock changes fluctuated considerably during the period, were frequently opposite (e.g. vegetation was a sink but soil was a source). The inclusion of vegetation sinks into the national GHG inventory of 2003 increased its uncertainty from between -4% and 9% to ± 19% (95% CI), and further inclusion of upland mineral soils increased it to ± 24%. The uncertainties of annual sinks can be reduced most efficiently by concentrating on the quality of the model input data. Despite the decreased precision of the national GHG inventory, the inclusion of uncertain sinks improves its accuracy due to the larger sectoral coverage of the inventory. If the national soil sink estimates were prepared by repeated soil sampling of model-stratified sample plots, the uncertainties would be accounted for in the stratum formation and sample allocation. Otherwise, the increases of sampling efficiency by stratification remain smaller. The highly variable and frequently opposite annual changes in ecosystem C pools imply the importance of full ecosystem C accounting. If forest C sink estimates will be used in practice average sink estimates seem a more reasonable basis than the annual estimates. This is due to the fact that annual forest sinks vary considerably and annual estimates are uncertain, and they have severe consequences for the reliability of the total national GHG balance. The estimation of average sinks should still be based on annual or even more frequent data due to the non-linear decomposition process that is influenced by the annual climate. The methodology used in this study to predict forest C sinks can be transferred to other countries with some modifications. The ultimate verification of sink estimates should be based on comparison to empirical data, in which case the model-based stratification presented in this study can serve to improve the efficiency of the sampling design.
Resumo:
Biological invasions are considered as one of the greatest threats to biodiversity, as they may lead to disruption and homogenization of natural communities, and in the worst case, to native species extinctions. The introduction of gene modified organisms (GMOs) to agricultural, fisheries and forestry practices brings them into contact with natural populations. GMOs may appear as new invasive species if they are able to (1) invade into natural habitats or (2) hybridize with their wild relatives. The benefits of GMOs, such as increased yield or decreased use of insecticides or herbicides in cultivation, may thus be reduced due the potential risks they may cause. A careful ecological risk analysis therefore has to precede any responsible GMO introduction. In this thesis I study ecological invasion in relation to GMOs, and what kind of consequences invasion may have in natural populations. A set of theoretical models that combine life-history evolution, population dynamics, and population genetics were developed for the hazard identification part of ecological risks assessment of GMOs. In addition, the potential benefits of GMOs in management of an invasive pest were analyzed. In the first study I showed that a population that is fluctuating due to scramble-type density dependence (due to, e.g., nutrient competition in plants) may be invaded by a population that is relatively more limited by a resource (e.g., light in plants) that is a cause of contest-type density dependence. This result emphasises the higher risk of invasion in unstable environments. The next two studies focused on escape of a growth hormone (GH) transgenic fish into a natural population. The results showed that previous models may have given too pessimistic a view of the so called Trojan gene -effect, where the invading genotype is harmful for the population as a whole. The previously suggested population extinctions did not occur in my studies, since the changes in mating preferences caused by the GH-fish were be ameliorated by decreased level of competition. The GH-invaders may also have to exceed a threshold density before invasion can be successful. I also showed that the prevalence of mature parr (aka. sneaker) strategy among GH-fish may have clear effect on invasion outcome. The fourth study assessed the risks and developed methods against the invasion of the Colorado Potato Beetle (CPB, Leptinotarsa decemlineata). I showed that the eradication of CPB is most important for the prevention of their establishment, but the cultivation of transgenic Bt-potato could also be effective. In general, my results emphasise that invasion of transgenic species or genotypes to be possible under certain realistic conditions and resulting in competitive exclusion, population decline through outbreeding depression and genotypic displacement of native species. Ecological risk assessment should regard the decline and displacement of the wild genotype by an introduced one as a consequence that is as serious as the population extinction. It will also be crucial to take into account different kinds of behavioural differences among species when assessing the possible hazards that GMOs may cause if escaped. The benefits found of GMO crops effectiveness in pest management may also be too optimistic since CPB may evolve resistance to Bt-toxin. The models in this thesis could be further applied in case specific risk assessment of GMOs by supplementing them with detailed data of the species biology, the effect of the transgene introduced to the species, and also the characteristics of the populations or the environments in the risk of being invaded.
Resumo:
Double-stranded RNA and associated proteins are known to regulate the gene expression of most eukaryotic organisms. These regulation pathways have different components, outcomes and distinct nomenclature depending on the model system, and often they are referred to collectively as RNA silencing. In many cases, RNA-dependent RNA polymerases (RdRPs) are found to be involved in the RNA silencing, but their targets, activities, interaction partners and reaction products remain enigmatic. In the filamentous fungus Neurospora crassa, the RdRP QDE-1 is critical for silencing of transgenes a phenomenon known as quelling. In this thesis the structure, biochemical activities and biological functions of QDE-1 were extensively studied. This dimeric RdRP was shown to possess five distinct catalytic in vitro activities that could be dissected by mutagenesis and by altering reaction conditions. The biochemical characterization implied that QDE-1 is actually an active DNA-dependent RNA polymerase that has additional RdRP activity. It also provided a structural explanation for the dimerization and suggested a biological framework for the functions of QDE-1 in vivo. (I) QDE-1 was also studied in a broader context along with the other components of the quelling pathway. It was shown that DNA damage in Neurospora causes a dramatic increase in the expression level of the Argonaute protein QDE-2 as well as the synthesis of a novel class of small RNAs known as qiRNAs. The accumulation of qiRNAs was shown to be dependent on several quelling components, and particularly to be derived from an aberrant ssRNA (aRNA) molecule that is synthesized by QDE-1 in the nucleus. The genomic distribution of qiRNA targets was analyzed and the possible biological significance of qiRNAs was studied. Importantly, qiRNAs are the first class of small RNAs that are induced by DNA damage. (II) After establishing that QDE-1 is a multifunctional RNA polymerase with several activities, template specificities and subcellular locations, the focus was turned onto its interaction partners. It had been previously known that QDE-1 associates with Replication Protein A (RPA), but the RecQ helicase QDE-3 was now shown to regulate this interaction. RPA was also observed to promote QDE-1 dependent dsRNA synthesis in vitro. By characterizing the interplay between QDE-1, QDE-3 and RPA, a working model of quelling and qiRNA pathways in Neurospora was presented. (III) This work sheds light on the complexity of the various RNA silencing pathways of a fungal model system. It shows how an RdRP can regulate gene expression on many levels, and suggests novel lines of research in other eukaryotic organisms.
Resumo:
Bacterial surface-associated proteins are important in communication with the environment and bacteria-host interactions. In this thesis work, surface molecules of Lactobacillus crispatus important in host interaction were studied. The L. crispatus strains of the study were known from previous studies to be efficient in adhesion to intestinal tract and ECM. L. crispatus JCM 5810 possess an adhesive surface layer (S-layer) protein, whose functions and domain structure was characterized. We cloned two S-layer protein genes (cbsA; collagen-binding S-layer protein A and silent cbsB) and identified the protein region in CbsA important for adhesion to host tissues, for polymerization into a periodic layer as well as for attachment to the bacterial cell surface. The analysis was done by extensive mutation analysis and by testing His6-tagged fusion proteins from recombinant Escherichia coli as well as by expressing truncated CbsA peptides on the surface of Lactobacillus casei. The N-terminal region (31-274) of CbsA showed efficient and specific binding to collagens, laminin and extracellular matrix on tissue sections of chicken intestine. The N-terminal region also contained the information for formation of periodic S-layer polymer. This region is bordered at both ends by a conserved short region rich in valines, whose substitution to leucines drastically affected the periodic polymer structure. The mutated CbsA proteins that failed to form a periodic polymer, did not bind collagens, which indicates that the polymerized structure of CbsA is needed for collagen-binding ability. The C-terminal region, which is highly identical in S-layer proteins of L. crispatus, Lactobacillus acidophilus and Lactobacillus helveticus, was shown to anchor the protein to the bacterial cell wall. The C-terminal CbsA peptide specifically bound to bacterial teichoic acid and lipoteichoic acids. In conclusion, the N-terminal domain of the S-layer protein of L. crispatus is important for polymerization and adhesion to host tissues, whereas the C-terminal domain anchors the protein to bacterial cell-wall teichoic acids. Lactobacilli are fermentative organisms that effectively lower the surrounding pH. While this study was in progress, plasminogen-binding proteins enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified in the extracellular proteome of L. crispatus ST1. In this work, the cell-wall association of enolase and GAPDH were shown to rely on pH-reversible binding to the cell-wall lipoteichoic acids. Enolase from L. crispatus was functionally compared with enolase from L. johnsonii as well as from pathogenic streptococci (Streptococcus pneumoniae, Streptococcus pyogenes) and Staphylococcus aureus. His6-enolases from commensal lactobacilli bound human plasminogen and enhanced its activation by human plasminogen activators similarly to, or even better than, the enolases from pathogens. Similarly, the His6-enolases from lactobacilli exhibited adhesive characteristics previously assigned to pathogens. The results call for more detailed analyses of the role of the host plasminogen system in bacterial pathogenesis and commensalism as well of the biological role and potential health risk of the extracellular proteome in lactobacilli.
Resumo:
Microbial degradation pathways play a key role in the detoxification and the mineralization of polyaromatic hydrocarbons (PAHs), which are widespread pollutants in soil and constituents of petroleum hydrocarbons. In microbiology the aromatic degradation pathways are traditionally studied from single bacterial strains with capacity to degrade certain pollutant. In soil the degradation of aromatics is performed by a diverse community of micro-organisms. The aim of this thesis was to study biodegradation on different levels starting from a versatile aromatic degrader Sphingobium sp. HV3 and its megaplasmid, extending to revelation of diversity of key catabolic enzymes in the environment and finally studying birch rhizoremediation in PAH-polluted soil. To understand biodegradation of aromatics on bacterial species level, the aromatic degradation capacity of Sphingobium sp. HV3 and the role of the plasmid pSKY4, was studied. Toluene, m-xylene, biphenyl, fluorene, phenanthrene were detected as carbon and energy sources of the HV3 strain. Tn5 transposon mutagenesis linked the degradation capacity of toluene, m-xylene, biphenyl and naphthalene to the pSKY4 plasmid and qPCR expression analysis showed that plasmid extradiol dioxygenases genes (bphC and xylE) are inducted by phenanthrene, m-xylene and biphenyl whereas the 2,4-dichlorophenoxyacetic acid herbicide induced the chlorocatechol 1,2-dioxygenase gene (tfdC) from the ortho-pathway. A method to study upper meta-pathway extradiol dioxygenase gene diversity in soil was developed. The extradiol dioxygenases catalyse cleavage of the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon (meta-cleavage). A high diversity of extradiol dioxygenases were detected from polluted soils. The detected extradiol dioxygenases showed sequence similarity to known catabolic genes of Alpha-, Beta-, and Gammaproteobacteria. Five groups of extradiol dioxygenases contained sequences with no close homologues in the database, representing novel genes. In rhizoremediation experiment with birch (Betula pendula) treatment specific changes of extradiol dioxygenase communities were shown. PAH pollution changed the bulk soil extradiol dioxygenase community structure and birch rhizosphere contained a more diverse extradiol dioxygenase community than the bulk soil showing a rhizosphere effect. The degradation of pyrene in soil was enhanced with birch seedlings compared to soil without birch. The complete 280,923 kb nucleotide sequence of pSKY4 plasmid was determined. The open reading frames of pSKY4 were divided into putative conjugative transfer, aromatic degradation, replication/maintaining and transposition/integration function-encoding proteins. Aromatic degradation orfs shared high similarity to corresponding genes in pNL1, a plasmid from the deep subsurface strain Novosphingobium aromaticivorans F199. The plasmid backbones were considerably more divergent with lower similarity, which suggests that the aromatic pathway has functioned as a plasmid independent mobile genetic element. The functional diversity of microbial communities in soil is still largely unknown. Several novel clusters of extradiol dioxygenases representing catabolic bacteria, whose function, biodegradation pathways and phylogenetic position is not known were amplified with single primer pair from polluted soils. These extradiol dioxygenase communities were shown to change upon PAH pollution, which indicates that their hosts function in PAH biodegradation in soil. Although the degradation pathways of specific bacterial species are substantially better depicted than pathways in situ, the evolution of degradation pathways for the xenobiotic compounds is largely unknown. The pSKY4 plasmid contains aromatic degradation genes in putative mobile genetic element causing flexibility/instability to the pathway. The localisation of the aromatic biodegradation pathway in mobile genetic elements suggests that gene transfer and rearrangements are a competetive advantage for Sphingomonas bacteria in the environment.
Resumo:
Filamentous fungi of the subphylum Pezizomycotina are well known as protein and secondary metabolite producers. Various industries take advantage of these capabilities. However, the molecular biology of yeasts, i.e. Saccharomycotina and especially that of Saccharomyces cerevisiae, the baker's yeast, is much better known. In an effort to explain fungal phenotypes through their genotypes we have compared protein coding gene contents of Pezizomycotina and Saccharomycotina. Only biomass degradation and secondary metabolism related protein families seem to have expanded recently in Pezizomycotina. Of the protein families clearly diverged between Pezizomycotina and Saccharomycotina, those related to mitochondrial functions emerge as the most prominent. However, the primary metabolism as described in S. cerevisiae is largely conserved in all fungi. Apart from the known secondary metabolism, Pezizomycotina have pathways that could link secondary metabolism to primary metabolism and a wealth of undescribed enzymes. Previous studies of individual Pezizomycotina genomes have shown that regardless of the difference in production efficiency and diversity of secreted proteins, the content of the known secretion machinery genes in Pezizomycotina and Saccharomycotina appears very similar. Genome wide analysis of gene products is therefore needed to better understand the efficient secretion of Pezizomycotina. We have developed methods applicable to transcriptome analysis of non-sequenced organisms. TRAC (Transcriptional profiling with the aid of affinity capture) has been previously developed at VTT for fast, focused transcription analysis. We introduce a version of TRAC that allows more powerful signal amplification and multiplexing. We also present computational optimisations of transcriptome analysis of non-sequenced organism and TRAC analysis in general. Trichoderma reesei is one of the most commonly used Pezizomycotina in the protein production industry. In order to understand its secretion system better and find clues for improvement of its industrial performance, we have analysed its transcriptomic response to protein secretion stress conditions. In comparison to S. cerevisiae, the response of T. reesei appears different, but still impacts on the same cellular functions. We also discovered in T. reesei interesting similarities to mammalian protein secretion stress response. Together these findings highlight targets for more detailed studies.
Resumo:
The eukaryotic cell nucleoplasm is separated from the cytoplasm by the nuclear envelope. This compartmentation of eukaryotic cells requires that all nuclear proteins must be transported from the cytoplasm into the nucleus. Transport of macromolecules between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs). Proteins to be targeted into the nucleus by the classical nuclear import system contain nuclear localization signals (NLSs), which are recognized by importin alpha, the NLS receptor. Importin alpha binds to importin beta, which docks the importin-cargo complex on the cytoplasmic side of the NPC and mediates the movement of the complex into the nucleus. Presently six human importin alpha isoforms have been identified. Transcription factors are among the most important regulators of gene expression in eukaryotic organisms. Transcription factors bind to specific DNA sequences on target genes and modulate the activity of the target gene. Many transcription factors, including signal transducers and activators of transcription (STAT) and nuclear factor kB (NF-kB), reside in the cytoplasm in an inactive form, and upon activation they are rapidly transported into the nucleus. In the nucleus STATs and NF-kB regulate the activity of genes whose products are critical in controlling numerous cellular and organismal processes, such as inflammatory and immune responses, cell growth, differentiation and survival. The aim of this study was to investigate the nuclear import mechanisms of STAT and NF-kB transcription factors. This work shows that STAT1 homodimers and STAT1/STAT2 heterodimers bind specifically and directly to importin alpha5 molecule via unconventional dimer-specific NLSs. Importin alpha molecules have two regions, which have been shown to directly interact with the amino acids in the NLS of the cargo molecule. The Arm repeats 2-4 comprise the N-terminal NLS binding site and Arm repeats 7-8 the C-terminal NLS binding site. In this work it is shown that the binding site for STAT1 homodimers and STAT1/STAT2 heterodimers is composed of Arm repeats 8 and 9 of importin alpha5 molecule. This work demonstrates that all NF-kB proteins are transported into the nucleus by importin alpha molecules. In addition, NLS was identified in RelB protein. The interactions between NF-kB proteins and importin alpha molecules were found to be directly mediated by the NLSs of NF-kB proteins. Moreover, we found that p50 binds to the N-terminal and p65 to the C-terminal NLS binding site of importin alpha3. The results from this thesis work identify previously uncharacterized mechanisms in nuclear import of STAT and NF-kB. These findings provide new insights into the molecular mechanisms regulating the signalling cascades of these important transcription factors from the cytoplasm into the nucleus to the target genes.
Resumo:
Plants produce a diversity of secondary metabolites, i.e., low-molecular-weight compounds that have primarily ecological functions in plants. The flavonoid pathway is one of the most studied biosynthetic pathways in plants. In order to understand biosynthetic pathways fully, it is necessary to isolate and purify the enzymes of the pathways to study individual steps and to study the regulatory genes of the pathways. Chalcone synthases are key enzymes in the formation of several groups of flavonoids, including anthocyanins. In this study, a new chalcone synthase enzyme (GCHS4), which may be one of the main contributors to flower colour, was characterised from the ornamental plant Gerbera hybrida. In addition, four chalcone synthase-like genes and enzymes (GCHS17, GCHS17b, GCHS26 and GCHS26b) were studied. Spatial expression of the polyketide synthase gene family in gerbera was also analysed with quantitative RT-PCR from 12 tissues, including several developmental stages and flower types. A previously identified MYB transcription factor from gerbera, GMYB10, which regulates the anthocyanin pathway, was transferred to gerbera and the phenotypes were analysed. Total anthocyanin content and anthocyanidin profiles of control and transgenic samples were compared spectrophotometrically and with HPLC. The overexpression of GMYB10 alone was able to change anthocyanin pigmentation: cyanidin pigmentation was induced and pelargonidin pigmentation was increased. The gerbera 9K cDNA microarray was used to compare the gene expression profiles of transgenic tissues against the corresponding control tissues to reveal putative target genes for GMYB10. GMYB10 overexpression affected the expression of both early and late biosynthetic genes in anthocyanin-accumulating transgenic tissues, including the newly isolated gene GCHS4. Two new MYB domain factors, named as GMYB11 and GMYB12, were also upregulated. Gene transfer is not only a powerful tool for basic research, but also for plant breeding. However, crop improvement by genetic modification (GM) remains controversial, at least in Europe. Many of the concerns relating to both human health and to ecological impacts relate to changes in the secondary metabolites of GM crops. In the second part of this study, qualitative and quantitative differences in cytotoxicity and metabolic fingerprints between 225 genetically modified Gerbera hybrida lines and 42 non-GM Gerbera varieties were compared. There was no evidence for any major qualitative and quantitative changes between the GM lines and non-GM varieties. The developed cell viability assays offer also a model scheme for cell-based cytotoxicity screening of a large variety of GM plants in standardized conditions.
Resumo:
Benthic-pelagic coupling describes processes that operate across and between the seafloor and open-water ecosystems. In soft-sediment communities, bioturbation by sediment-dwelling and epibenthic organisms may strongly shape habitat characteristics and influence processes, e.g. biogeochemical cycling, which supplies bioavailable nutrients to pelagic primary producers. In addition, benthic fauna may mediate benthic-pelagic coupling by affecting the survival and hatching of zooplankton dormant eggs in the sediment. In the shallow waters and seasonally fluctuating environment of the Baltic Sea, emergence from the seafloor essentially contributes to the dynamics of zooplankton pelagic populations. In this thesis, I examine how benthic organisms with different functional traits affect the link between the benthic and pelagic systems in the northern Baltic Sea. By means of experimental laboratory studies, the effects of sediment-dwelling (Monoporeia affinis, Macoma balthica and Marenzelleria spp.) and nectobenthic (Mysis spp.) taxa on the survival and hatching of zooplankton benthic eggs and on benthic nutrient fluxes and sediment structure were investigated. In the predation studies, the nectobenthic mysids Mysis spp. preyed upon benthic eggs of the cladoceran Bosmina longispina maritima (syn. B. coregoni maritima), both in pelagic and benthic environments. Of the sediment-dwelling species, the amphipod M. affinis and the bivalve M. balthica reduced the number of cladoceran eggs in the sediment, whereas the polychaetes Marenzelleria spp. had no effects on cladoceran eggs. Both M. balthica and M. affinis also increased the mortality rates of benthic eggs of copepods and rotifers. It was estimated that zooplankton eggs provide an additional carbon source for food-limited benthic communities. The results indicate that predation pressure on zooplankton benthic eggs may be strong, but varies widely depending on the season and the functional characteristics of the macrofauna. Macoma balthica buried cladoceran eggs and a fluorescent tracer from the sediment surface to a depth of 3 4 cm, indicating efficient sediment mixing. In contrast, the other taxa had fewer effects on particle distributions. In addition to organic matter mineralization, particle mixing is crucial to the success of benthic recruitment of zooplankton, since only eggs close to the sediment surface may hatch. Macoma balthica and M. affinis altered the patterns of zooplankton emergence from the sediment. In general, the highest emergence rates were observed in the absence of macroscopic fauna, and M. balthica exerted a stronger suppressive effect than M. affinis. Moreover, copepods were less severely affected than cladocerans, while only one species (Temora longicornis) clearly benefited from the presence of the macrofauna. These differences probably result from species-specific differences in the resistance of eggs to disturbances. The results show that benthic fauna may considerably alter the patterns of zooplankton emergence from the seafloor, thereby shaping zooplankton pelagic populations. The semi-motile M. balthica and Marenzelleria spp. increased the fluxes of phosphate and ammonium from the sediment to the water, whereas the motile M. affinis and Mysis mixta had a contrasting effect. In the eutrophied Baltic Sea, efficient internal cycling of bioavailable nutrients forms a strong feedback inhibiting the recovery of the ecosystem. Based on the results, a change in species dominance from the two motile taxa, susceptible to oxygen deficiency, to the more tolerant semi-motile taxa provides additional feedback, strengthening internal nutrient cycling and accelerating eutrophication, with deteriorating near-bottom oxygen conditions and changes in the benthic communities. In shallow-water ecosystems, benthic nutrient regeneration plays a key role in determining the overall productivity of the ecosystem. In addition, the results of this study show that the communities in the benthos may essentially contribute to the structure of those in the plankton.
Resumo:
Agriculture-mediated habitat loss and degradation together with climate change are among the greatest global threats to species, communities, and ecosystem functioning. During the last century, more than 50% of the world's wetlands have been lost and agricultural activities have subjected wetland species to increased isolation and decreased quality of habitats. Likewise, as a part of agricultural intensification, the use of pesticides has increased notably, and pesticide residues occur frequently in wetlands making the exposure of wetland organisms to pesticides highly probable. In this thesis, a set of ecotoxicological and landscape ecological studies were carried out to investigate pesticide-effects on tadpoles, and species-habitat relationships of amphibians in agricultural landscapes. The results show that the fitness of R. temporaria tadpoles can be negatively affected by sublethal pesticide concentrations, and that pesticides may increase the costs of response to natural environmental stressors. However, tadpoles may also be able to compensate for some of the negative effects of pesticides. The results further demonstrate that both historic and current-day agricultural land use can negatively impact amphibians, but that in some cases the costs of living in agricultural habitats may only become apparent when amphibians face other environmental stressors, such as drought. Habitat heterogeneity may, however, increase the persistence of amphibians in agricultural landscapes. Hence, the results suggest that amphibians are likely to be affected by agricultural processes that operate at several spatial and temporal scales, and that it is probable that various processes related to current-day agriculture will affect both larval and adult amphibians. The results imply that maintaining dense wetland patterns could enhance persistence of amphibian populations in agricultural habitats, and indicate that heterogeneous landscapes may lower the risk of regional amphibian population declines under extreme weather perturbations.
Resumo:
All organisms have evolved mechanisms to acquire thermotolerance. A moderately high temperature activates heat shock genes and triggers thermotolerance towards otherwise lethal high temperature. The focus of this work is the recovery mechanisms ensuring survival of Saccharomyces cerevisiae yeast cells after thermal insult. Yeast cells, first preconditioned at 37˚C, can survive a short thermal insult at 48-50˚C and are able to refold heat-denatured proteins when allowed to recover at physiological temperature 24˚C. The cytoplasmic chaperone Hsp104 is required for the acquisition of thermotolerance and dissolving protein aggregates in the cytosol with the assistance of disaccharide trehalose. In the present study, Hsp104 and trehalose were shown to be required for conformational repair of heat-denatured secretory proteins in the endoplasmic reticulum. A reporter protein was first accumulated in the lumen of endoplasmic reticulum and heat-denatured by thermal insult, and then failed to be repaired to enzymatically active and secretion-competent conformation in the absence of Hsp104 or trehalose. The efficient transport of a glycoprotein CPY, accumulated in the endoplasmic reticulum, to the vacuole after thermal insult also needed the presence of Hsp104 and trehalose. However, proteins synthesized after thermal insult at physiological temperature were secreted with similar kinetics both in the absence and in the presence of Hsp104 or trehalose, demonstrating that the secretion machinery itself was functional. As both Hsp104 and trehalose are cytosolic, a cross-talk between cytosolic and luminal chaperone machineries across the endoplasmic reticulum membrane appears to take place. Global expression profiles, obtained with the DNA microarray technique, revealed that the gene expression was shut down during thermal insult and the majority of transcripts were destroyed. However, the transcripts of small cytosolic chaperones Hsp12 and Hsp26 survived. The first genes induced during recovery were related to refolding of denatured proteins and resumption of de novo protein synthesis. Transcription factors Spt3p and Med3p appeared to be essential for acquisition of full thermotolerance. The transcription factor Hac1p was found to be subject to delayed up-regulation at mRNA level and this up-regulation was diminished or delayed in the absence of Spt3p or Med3p. Consequently, production of the chaperone BiP/Kar2p, a target gene of Hac1p, was diminished and delayed in Δspt3 and Δmed3 deletion strains. The refolding of heat-denatured secretory protein CPY to a transport-competent conformation was retarded, and a heat-denatured reporter enzyme failed to be effectively reactivated in the cytoplasm of the deletion strains.
Resumo:
Mutation and recombination are the fundamental processes leading to genetic variation in natural populations. This variation forms the raw material for evolution through natural selection and drift. Therefore, studying mutation rates may reveal information about evolutionary histories as well as phylogenetic interrelationships of organisms. In this thesis two molecular tools, DNA barcoding and the molecular clock were examined. In the first part, the efficiency of mutations to delineate closely related species was tested and the implications for conservation practices were assessed. The second part investigated the proposition that a constant mutation rate exists within invertebrates, in form of a metabolic-rate dependent molecular clock, which can be applied to accurately date speciation events. DNA barcoding aspires to be an efficient technique to not only distinguish between species but also reveal population-level variation solely relying on mutations found on a short stretch of a single gene. In this thesis barcoding was applied to discriminate between Hylochares populations from Russian Karelia and new Hylochares findings from the greater Helsinki region in Finland. Although barcoding failed to delineate the two reproductively isolated groups, their distinct morphological features and differing life-history traits led to their classification as two closely related, although separate species. The lack of genetic differentiation appears to be due to a recent divergence event not yet reflected in the beetles molecular make-up. Thus, the Russian Hylochares was described as a new species. The Finnish species, previously considered as locally extinct, was recognized as endangered. Even if, due to their identical genetic make-up, the populations had been regarded as conspecific, conservation strategies based on prior knowledge from Russia would not have guaranteed the survival of the Finnish beetle. Therefore, new conservation actions based on detailed studies of the biology and life-history of the Finnish Hylochares were conducted to protect this endemic rarity in Finland. The idea behind the strict molecular clock is that mutation rates are constant over evolutionary time and may thus be used to infer species divergence dates. However, one of the most recent theories argues that a strict clock does not tick per unit of time but that it has a constant substitution rate per unit of mass-specific metabolic energy. Therefore, according to this hypothesis, molecular clocks have to be recalibrated taking body size and temperature into account. This thesis tested the temperature effect on mutation rates in equally sized invertebrates. For the first dataset (family Eucnemidae, Coleoptera) the phylogenetic interrelationships and evolutionary history of the genus Arrhipis had to be inferred before the influence of temperature on substitution rates could be studied. Further, a second, larger invertebrate dataset (family Syrphidae, Diptera) was employed. Several methodological approaches, a number of genes and multiple molecular clock models revealed that there was no consistent relationship between temperature and mutation rate for the taxa under study. Thus, the body size effect, observed in vertebrates but controversial for invertebrates, rather than temperature may be the underlying driving force behind the metabolic-rate dependent molecular clock. Therefore, the metabolic-rate dependent molecular clock does not hold for the here studied invertebrate groups. This thesis emphasizes that molecular techniques relying on mutation rates have to be applied with caution. Whereas they may work satisfactorily under certain conditions for specific taxa, they may fail for others. The molecular clock as well as DNA barcoding should incorporate all the information and data available to obtain comprehensive estimations of the existing biodiversity and its evolutionary history.