41 resultados para ANALYTIC-FUNCTIONS
Resumo:
Alphaviruses are positive strand RNA viruses that replicate in association with cellular membranes. The viral RNA replication complex consists of four non-structural proteins nsP1-nsP4 which are essential for viral replication. The functions of nsP1, nsP2 and nsP4 are well established, but the roles of nsP3 are mainly unknown. In this work I have clarified some of the functions of nsP3 in order to better understand the importance of this protein in virus replication. Semliki Forest virus (SFV) has been mostly used as a model alphavirus during this work, but some experiments have also been conducted with Sindbis and Chikungunya viruses. NsP3 is composed of three different protein domains. The N-terminus of nsP3 contains an evolutionarily conserved macrodomain, the central part of nsP3 contains a domain that is only found in alphaviruses, and the C-terminus of the protein is hypervariable and predicted to be unstructured. In this work I have analyzed the functions of nsP3 macrodomain, and shown that viral macrodomains bind poly(ADP-ribose) and that they do not resemble cellular macrodomains in their properties. Furthermore, I have shown that some macrodomains, including viral macrodomains of SFV and hepatitis E virus, also bind poly(A). Mutations in the ligand binding pocket of SFV macrodomain hamper virus replication but do not confer lethality, indicating that macrodomain function is beneficial but not mandatory for virus replication. The hypervariable C-terminus of nsP3 is heavily phosphorylated and is enriched in proline residues. In this work it is shown that this region harbors an SH3 domain binding motif (Sh3BM) PxRxPR through which cellular amphiphysin is recruited to viral replication sites and to nsP3 containing cytoplasmic aggregate structures. The function of Sh3BM was destroyed by a single point mutation, which led to impaired viral RNA replication in HeLa cells, pointing out the functional importance of amphiphysin recruitment by the Sh3BM. In addition, evidence is provided tho show that the endosomal localization of alphavirus replication is mediated by nsP3 and that the phosphorylation of hypervariable region might be important for the endosomal targeting. Together these findings demonstrate that nsP3 contains multiple important host interaction motifs and domains, which facilitate successful viral propagation in host cells.
Resumo:
The study presents a theory of utility models based on aspiration levels, as well as the application of this theory to the planning of timber flow economics. The first part of the study comprises a derivation of the utility-theoretic basis for the application of aspiration levels. Two basic models are dealt with: the additive and the multiplicative. Applied here solely for partial utility functions, aspiration and reservation levels are interpreted as defining piecewisely linear functions. The standpoint of the choices of the decision-maker is emphasized by the use of indifference curves. The second part of the study introduces a model for the management of timber flows. The model is based on the assumption that the decision-maker is willing to specify a shape of income flow which is different from that of the capital-theoretic optimum. The utility model comprises four aspiration-based compound utility functions. The theory and the flow model are tested numerically by computations covering three forest holdings. The results show that the additive model is sensitive even to slight changes in relative importances and aspiration levels. This applies particularly to nearly linear production possibility boundaries of monetary variables. The multiplicative model, on the other hand, is stable because it generates strictly convex indifference curves. Due to a higher marginal rate of substitution, the multiplicative model implies a stronger dependence on forest management than the additive function. For income trajectory optimization, a method utilizing an income trajectory index is more efficient than one based on the use of aspiration levels per management period. Smooth trajectories can be attained by squaring the deviations of the feasible trajectories from the desired one.
Resumo:
In the study, the potential allowable cut in the district of Pohjois-Savo - based on the non-industrial private forest landowners' (NIPF) choices of timber management strategies - was clarified. Alternative timber management strategies were generated, and the choices and factors affecting the choices of timber management strategies by NIPF landowners were studied. The choices of timber management strategies were solved by maximizing the utility functions of the NIPF landowners. The parameters of the utility functions were estimated using the Analytic Hierarchy Process (AHP). The level of the potential allowable cut was compared to the cutting budgets based on the 7th and 8th National Forest Inventories (NFI7 and NFI8), to the combining of private forestry plans, and to the realized drain from non-industrial private forests. The potential allowable cut was calculated using the same MELA system as has been used in the calculation of the national cutting budget. The data consisted of the NIPF holdings (from the TASO planning system) that had been inventoried compartmentwise and had forestry plans made during the years 1984-1992. The NIPF landowners' choices of timber management strategies were clarified by a two-phase mail inquiry. The most preferred strategy obtained was "sustainability" (chosen by 62 % of landowners). The second in order of preference was "finance" (17 %) and the third was "saving" (11 %). "No cuttings", and "maximum cuttings" were the least preferred (9 % and 1 %, resp.). The factors promoting the choices of strategies with intensive cuttings were a) "farmer as forest owner" and "owning fields", b) "increase in the size of the forest holding", c) agriculture and forestry orientation in production, d) "decreasing short term stumpage earning expectations", e) "increasing intensity of future cuttings", and f) "choice of forest taxation system based on site productivity". The potential allowable cut defined in the study was 20 % higher than the average of the realized drain during the years 1988-1993, which in turn, was at the same level as the cutting budget based on the combining of forestry plans in eastern Finland. Respectively, the potential allowable cut defined in the study was 12 % lower than the NFI8-based greatest sustained allowable cut for the 1990s. Using the method presented in this study, timber management strategies can be clarified for non-industrial private forest landowners in different parts of Finland. Based on the choices of timber managemet strategies, regular cutting budgets can be calculated more realistically than before.
Resumo:
Human papillomaviruses (HPVs) are the causal agents of cervical cancer, which is the second most common cancer among women worldwide. Cellular transformation and carcinogenesis depend on the activities of viral E5, E6 and E7 proteins. Alterations in cell-cell contacts and in communication between epithelial cells take place during cervical carcinogenesis, leading to changes in cell morphology, increased cell motility and finally invasion. The aim of this thesis was to study genome-wide effects of the HPV type 16 (HPV-16) E5 protein on the expression of host cell messenger RNAs (mRNAs) and microRNAs by applying microarray technology. The results showed that the HPV-16 E5 protein alters several cellular pathways involved in cellular adhesion, motility and proliferation as well as in the extracellular matrix. The E5 protein was observed to enhance wound healing of epithelial cell monolayers by increasing cell motility in vivo. HPV-16 E5-induced alterations in the expression of cellular microRNAs and their target genes seem to favour increased proliferation and tumorigenesis. E5 was also shown to affect the expression of adherens junction proteins in HaCaT epithelial keratinocytes. In addition, a study of a membrane cytoskeletal cross-linker protein, ezrin, revealed that when activated, it localizes to adherens junctions. The results suggest that ezrin distribution to forming adherens junctions is due to Rac1 activity in epithelial cells. These studies reveal for the first time the holistic effects of HPV-16 E5 protein in promoting precancerous events in epithelial cells. The results contribute to identifyinging novel markers for cervical precancerous stages and to predicting disease behaviour.
Resumo:
Toeplitz operators are among the most important classes of concrete operators with applications to several branches of pure and applied mathematics. This doctoral thesis deals with Toeplitz operators on analytic Bergman, Bloch and Fock spaces. Usually, a Toeplitz operator is a composition of multiplication by a function and a suitable projection. The present work deals with generalizing the notion to the case where the function is replaced by a distributional symbol. Fredholm theory for Toeplitz operators with matrix-valued symbols is also considered. The subject of this thesis belongs to the areas of complex analysis, functional analysis and operator theory. This work contains five research articles. The articles one, three and four deal with finding suitable distributional classes in Bergman, Fock and Bloch spaces, respectively. In each case the symbol class to be considered turns out to be a certain weighted Sobolev-type space of distributions. The Bergman space setting is the most straightforward. When dealing with Fock spaces, some difficulties arise due to unboundedness of the complex plane and the properties of the Gaussian measure in the definition. In the Bloch-type spaces an additional logarithmic weight must be introduced. Sufficient conditions for boundedness and compactness are derived. The article two contains a portion showing that under additional assumptions, the condition for Bergman spaces is also necessary. The fifth article deals with Fredholm theory for Toeplitz operators having matrix-valued symbols. The essential spectra and index theorems are obtained with the help of Hardy space factorization and the Berezin transform, for instance. The article two also has a part dealing with matrix-valued symbols in a non-reflexive Bergman space, in which case a condition on the oscillation of the symbol (a logarithmic VMO-condition) must be added.
Resumo:
This thesis studies the interest-rate policy of the ECB by estimating monetary policy rules using real-time data and central bank forecasts. The aim of the estimations is to try to characterize a decade of common monetary policy and to look at how different models perform at this task.The estimated rules include: contemporary Taylor rules, forward-looking Taylor rules, nonlinearrules and forecast-based rules. The nonlinear models allow for the possibility of zone-like preferences and an asymmetric response to key variables. The models therefore encompass the most popular sub-group of simple models used for policy analysis as well as the more unusual non-linear approach. In addition to the empirical work, this thesis also contains a more general discussion of monetary policy rules mostly from a New Keynesian perspective. This discussion includes an overview of some notable related studies, optimal policy, policy gradualism and several other related subjects. The regression estimations are performed with either least squares or the generalized method of moments depending on the requirements of the estimations. The estimations use data from both the Euro Area Real-Time Database and the central bank forecasts published in ECB Monthly Bulletins. These data sources represent some of the best data that is available for this kind of analysis. The main results of this thesis are that forward-looking behavior appears highly prevalent, but that standard forward-looking Taylor rules offer only ambivalent results with regard to inflation. Nonlinear models are shown to work, but on the other hand do not have a strong rationale over a simpler linear formulation. However, the forecasts appear to be highly useful in characterizing policy and may offer the most accurate depiction of a predominantly forward-looking central bank. In particular the inflation response appears much stronger while the output response becomes highly forward-looking as well.
Resumo:
Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.
Resumo:
This thesis is concerned with the area of vector-valued Harmonic Analysis, where the central theme is to determine how results from classical Harmonic Analysis generalize to functions with values in an infinite dimensional Banach space. The work consists of three articles and an introduction. The first article studies the Rademacher maximal function that was originally defined by T. Hytönen, A. McIntosh and P. Portal in 2008 in order to prove a vector-valued version of Carleson's embedding theorem. The boundedness of the corresponding maximal operator on Lebesgue-(Bochner) -spaces defines the RMF-property of the range space. It is shown that the RMF-property is equivalent to a weak type inequality, which does not depend for instance on the integrability exponent, hence providing more flexibility for the RMF-property. The second article, which is written in collaboration with T. Hytönen, studies a vector-valued Carleson's embedding theorem with respect to filtrations. An earlier proof of the dyadic version assumed that the range space satisfies a certain geometric type condition, which this article shows to be also necessary. The third article deals with a vector-valued generalizations of tent spaces, originally defined by R. R. Coifman, Y. Meyer and E. M. Stein in the 80's, and concerns especially the ones related to square functions. A natural assumption on the range space is then the UMD-property. The main result is an atomic decomposition for tent spaces with integrability exponent one. In order to suit the stochastic integrals appearing in the vector-valued formulation, the proof is based on a geometric lemma for cones and differs essentially from the classical proof. Vector-valued tent spaces have also found applications in functional calculi for bisectorial operators. In the introduction these three themes come together when studying paraproduct operators for vector-valued functions. The Rademacher maximal function and Carleson's embedding theorem were applied already by Hytönen, McIntosh and Portal in order to prove boundedness for the dyadic paraproduct operator on Lebesgue-Bochner -spaces assuming that the range space satisfies both UMD- and RMF-properties. Whether UMD implies RMF is thus an interesting question. Tent spaces, on the other hand, provide a method to study continuous time paraproduct operators, although the RMF-property is not yet understood in the framework of tent spaces.
Resumo:
The study attempts a reception-historical analysis of the Maccabean martyrs. The concept of reception has fundamentally to do with the re-use and interpretation of a text within new texts. In a religious tradition, certain elements become re-circulated and thus their reception may reflect the development of that particular tradition. The Maccabean martyrs first appear in 2 Maccabees. In my study, it is the Maccabean martyr figures who count as the received text; the focus is shifted from the interrelations between texts onto how the figures have been exploited in early Christian and Rabbinic sources. I have divided my sources into two categories and my analysis is in two parts. First, I analyze the reception of the Maccabean martyrs within Jewish and Christian historiographical sources, focusing on the role given to them in the depictions of the Maccabean Revolt (Chapter 3). I conclude that, within Jewish historiography, the martyrs are given roles, which vary between ultimate efficacy and marginal position with regard to making a historical difference. In Christian historiographical sources, the martyrs role grows in importance by time: however, it is not before a Christian cult of the Maccabean martyrs has been established, that the Christian historiographies consider them historically effective. After the first part, I move on to analyze the reception in sources, which make use of the Maccabean martyrs as paradigmatic figures (Chapter 4). I have suggested that the martyrs are paradigmatic in the context of martyrdom, persecution and destruction, on one hand, and in a homiletic context, inspiring religious celebration, on the other. I conclude that, as the figures are considered pre-Christian and biblical martyrs, they function well in terms of Christian martyrdom and have contributed to the development of its ideals. Furthermore, the presentation of the martyr figures in Rabbinic sources demonstrates how the notion of Jewish martyrdom arises from experiences of destruction and despair, not so much from heroic confession of faith in the face of persecution. Before the emergence of a Christian cult of the Maccabean martyrs, their identity is derived namely from their biblical position. Later on, in the homiletic context, their Jewish identity is debated and sometimes reconstructed as fundamentally Christian , despite of their Jewish origins. Similar debate about their identity is not found in the Rabbinic versions of their martyrdom and nothing there indicates a mutual debate between early Christians and Jews. A thematic comparison shows that the Rabbinic and Christian cases of reception are non-reliant on each other but also that they link to one another. Especially the scriptural connections, often made to the Maccabean mother, reveal the similarities. The results of the analyses confirm that the early history of Christianity and Rabbinic Judaism share, at least partly, the same religious environment and intertwining traditions, not only during the first century or two but until Late Antiquity and beyond. More likely, the reception of the Maccabean martyrs demonstrates that these religious traditions never ceased to influence one another.