57 resultados para electronic text


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The aims of this study were 1) to identify and describe health economic studies that have used quality-adjusted life years (QALYs) based on actual measurements of patients' health-related quality of life (HRQoL); 2) to test the feasibility of routine collection of health-related quality of life (HRQoL) data as an indicator of effectiveness of secondary health care; and 3) to establish and compare the cost-utility of three large-volume surgical procedures in a real-world setting in the Helsinki University Central Hospital, a large referral hospital providing secondary and tertiary health-care services for a population of approximately 1.4 million. Patients and methods: So as to identify studies that have used QALYs as an outcome measure, a systematic search of the literature was performed using the Medline, Embase, CINAHL, SCI and Cochrane Library electronic databases. Initial screening of the identified articles involved two reviewers independently reading the abstracts; the full-text articles were also evaluated independently by two reviewers, with a third reviewer used in cases where the two reviewers could not agree a consensus on which articles should be included. The feasibility of routinely evaluating the cost-effectiveness of secondary health care was tested by setting up a system for collecting HRQoL data on approximately 4 900 patients' HRQoL before and after operative treatments performed in the hospital. The HRQoL data used as an indicator of treatment effectiveness was combined with diagnostic and financial indicators routinely collected in the hospital. To compare the cost-effectiveness of three surgical interventions, 712 patients admitted for routine operative treatment completed the 15D HRQoL questionnaire before and also 3-12 months after the operation. QALYs were calculated using the obtained utility data and expected remaining life years of the patients. Direct hospital costs were obtained from the clinical patient administration database of the hospital and a cost-utility analysis was performed from the perspective of the provider of secondary health care services. Main results: The systematic review (Study I) showed that although QALYs gained are considered an important measure of the effectiveness of health care, the number of studies in which QALYs are based on actual measurements of patients' HRQoL is still fairly limited. Of the reviewed full-text articles, only 70 reported QALYs based on actual before after measurements using a valid HRQoL instrument. Collection of simple cost-effectiveness data in secondary health care is feasible and could easily be expanded and performed on a routine basis (Study II). It allows meaningful comparisons between various treatments and provides a means for allocating limited health care resources. The cost per QALY gained was 2 770 for cervical operations and 1 740 for lumbar operations. In cases where surgery was delayed the cost per QALY was doubled (Study III). The cost per QALY ranges between subgroups in cataract surgery (Study IV). The cost per QALY gained was 5 130 for patients having both eyes operated on and 8 210 for patients with only one eye operated on during the 6-month follow-up. In patients whose first eye had been operated on previous to the study period, the mean HRQoL deteriorated after surgery, thus precluding the establishment of the cost per QALY. In arthroplasty patients (Study V) the mean cost per QALY gained in a one-year period was 6 710 for primary hip replacement, 52 270 for revision hip replacement, and 14 000 for primary knee replacement. Conclusions: Although the importance of cost-utility analyses has during recent years been stressed, there are only a limited number of studies in which the evaluation is based on patients own assessment of the treatment effectiveness. Most of the cost-effectiveness and cost-utility analyses are based on modeling that employs expert opinion regarding the outcome of treatment, not on patient-derived assessments. Routine collection of effectiveness information from patients entering treatment in secondary health care turned out to be easy enough and did not, for instance, require additional personnel on the wards in which the study was executed. The mean patient response rate was more than 70 %, suggesting that patients were happy to participate and appreciated the fact that the hospital showed an interest in their well-being even after the actual treatment episode had ended. Spinal surgery leads to a statistically significant and clinically important improvement in HRQoL. The cost per QALY gained was reasonable, at less than half of that observed for instance for hip replacement surgery. However, prolonged waiting for an operation approximately doubled the cost per QALY gained from the surgical intervention. The mean utility gain following routine cataract surgery in a real world setting was relatively small and confined mostly to patients who had had both eyes operated on. The cost of cataract surgery per QALY gained was higher than previously reported and was associated with considerable degree of uncertainty. Hip and knee replacement both improve HRQoL. The cost per QALY gained from knee replacement is two-fold compared to hip replacement. Cost-utility results from the three studied specialties showed that there is great variation in the cost-utility of surgical interventions performed in a real-world setting even when only common, widely accepted interventions are considered. However, the cost per QALY of all the studied interventions, except for revision hip arthroplasty, was well below 50 000, this figure being sometimes cited in the literature as a threshold level for the cost-effectiveness of an intervention. Based on the present study it may be concluded that routine evaluation of the cost-utility of secondary health care is feasible and produces information essential for a rational and balanced allocation of scarce health care resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular level structure of mixtures of water and alcohols is very complicated and has been under intense research in the recent past. Both experimental and computational methods have been used in the studies. One method for studying the intra- and intermolecular bindings in the mixtures is the use of the so called difference Compton profiles, which are a way to obtain information about changes in the electron wave functions. In the process of Compton scattering a photon scatters inelastically from an electron. The Compton profile that is obtained from the electron wave functions is directly proportional to the probability of photon scattering at a given energy to a given solid angle. In this work we develop a method to compute Compton profiles numerically for mixtures of liquids. In order to obtain the electronic wave functions necessary to calculate the Compton profiles we need some statistical information about atomic coordinates. Acquiring this using ab-initio molecular dynamics is beyond our computational capabilities and therefore we use classical molecular dynamics to model the movement of atoms in the mixture. We discuss the validity of the chosen method in view of the results obtained from the simulations. There are some difficulties in using classical molecular dynamics for the quantum mechanical calculations, but these can possibly be overcome by parameter tuning. According to the calculations clear differences can be seen in the Compton profiles of different mixtures. This prediction needs to be tested in experiments in order to find out whether the approximations made are valid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature part of the thesis mainly reviews the results of the use of titanium catalysts for ethene and caprolactone polymerisation. The behaviour of titanium catalysts bearing phenoxy-imino ligands has been the focus of more detailed investigations in ethene polymerisation. Reasons for the production of multimodal polyethene for a range of catalysts are also given. The experimental part of the thesis is divided into two sections based on the monomers used in the polymerisations: Part A (ethene) and part B (caprolactone). Part A: Titanium(IV) complexes bearing phenoxy-imino ligands are known to possess high ethene polymerisation activities after MAO activation. Depending on the ligand, the activities of the catalysts in polymerisation can vary between 1 and 44000 kgPE/(mol*cat*h*bar). Depending on the polymerisation temperature and the electronic and steric properties of the catalyst ligands, low to high molar mass values and uni- and multimodal polydispersity values can been observed. In order to discover the reasons for these differences, 22 titanium(IV) complexes containing differently substituted phenoxy-imino derivatives as di- and tetradentate ligands were synthesised with high yields and used as homogeneous catalysts in ethene polymerisations. Computational methods were used to predict the geometry of the synthesised complexes and their configuration after activation. Based on the results obtained, the geometry of the catalyst together with the ligand substituents seem to play a major role in defining the catalytic activity. Novel titanium(IV) complexes bearing malonate ligands were also synthesised. Malonates are considered to be suitable ligand pre-cursors since they can be produced by the simple reaction of any primary or secondary alcohol with malonylchloride, and thus they are easily modifiable. After treatment with MAO these complexes had polymerisation activities between 10 and 50 kgPE/(mol*cat*h*bar) and surprisingly low polydispersity values when compared with similar types of catalysts bearing the O?O chelate ligand. Part B: One of the synthesis routes in the preparation of the above mentioned phenoxy-imino titanium dichloride complexes involved the use of Ti(NMe2)4 with a range of salicylaldimine type compounds. On reaction, these two compounds formed an intermediate product selectively and quantitatively which was active in the ring-opening polymerisation of caprolactone. Several mono-anionic alcoholates were also combined with Ti(NMe2)4 in different molar ratios and used as catalysts. Full conversion of the monomer was achieved within 15 minutes with catalysts having a co-ordination number of 4 while after 22 hours full conversion was achieved with catalysts having a co-ordination number of 6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commodity plastics that are used in our everyday lives are based on polyolefin resins and they find wide variety of applications in several areas. Most of the production is carried out in catalyzed low pressure processes. As a consequence polymerization of ethene and α-olefins has been one of the focus areas for catalyst research both in industry and academia. Enormous amount of effort have been dedicated to fine tune the processes and to obtain better control of the polymerization and to produce tailored polymer structures The literature review of the thesis concentrates on the use of Group IV metal complexes as catalysts for polymerization of ethene and branched α-olefins. More precisely the review is focused on the use of complexes bearing [O,O] and [O,N] type ligands which have gained considerable interest. Effects of the ligand framework as well as mechanical and fluxional behaviour of the complexes are discussed. The experimental part consists mainly of development of new Group IV metal complexes bearing [O,O] and [O,N] ligands and their use as catalysts precursors in ethene polymerization. Part of the experimental work deals with usage of high-throughput techniques in tailoring properties of new polymer materials which are synthesized using Group IV complexes as catalysts. It is known that the by changing the steric and electronic properties of the ligand framework it is possible to fine tune the catalyst and to gain control over the polymerization reaction. This is why in this thesis the complex structures were designed so that the ligand frameworks could be fairly easily modified. All together 14 complexes were synthesised and used as catalysts in ethene polymerizations. It was found that the ligand framework did have an impact within the studied catalyst families. The activities of the catalysts were affected by the changes in complex structure and also effects on the produced polymers were observed: molecular weights and molecular weight distributions were depended on the used catalyst structure. Some catalysts also produced bi- or multi-modal polymers. During last decade high-throughput techniques developed in pharmaceutical industries have been adopted into polyolefin research in order to speed-up and optimize the catalyst candidates. These methods can now be regarded as established method suitable for both academia and industry alike. These high-throughput techniques were used in tailoring poly(4-methyl-1-pentene) polymers which were synthesized using Group IV metal complexes as catalysts. This work done in this thesis represents the first successful example where the high-throughput synthesis techniques are combined with high-throughput mechanical testing techniques to speed-up the discovery process for new polymer materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Standard Model of particle physics consists of the quantum electrodynamics (QED) and the weak and strong nuclear interactions. The QED is the basis for molecular properties, and thus it defines much of the world we see. The weak nuclear interaction is responsible for decays of nuclei, among other things, and in principle, it should also effects at the molecular scale. The strong nuclear interaction is hidden in interactions inside nuclei. From the high-energy and atomic experiments it is known that the weak interaction does not conserve parity. Consequently, the weak interaction and specifically the exchange of the Z^0 boson between a nucleon and an electron induces small energy shifts of different sign for mirror image molecules. This in turn will make the other enantiomer of a molecule energetically favorable than the other and also shifts the spectral lines of the mirror image pair of molecules into different directions creating a split. Parity violation (PV) in molecules, however, has not been observed. The topic of this thesis is how the weak interaction affects certain molecular magnetic properties, namely certain parameters of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopies. The thesis consists of numerical estimates of NMR and ESR spectral parameters and investigations of the effects of different aspects of quantum chemical computations to them. PV contributions to the NMR shielding and spin-spin coupling constants are investigated from the computational point of view. All the aspects of quantum chemical electronic structure computations are found to be very important, which makes accurate computations challenging. Effects of molecular geometry are also investigated using a model system of polysilyene chains. PV contribution to the NMR shielding constant is found to saturate after the chain reaches a certain length, but the effects of local geometry can be large. Rigorous vibrational averaging is also performed for a relatively small and rigid molecule. Vibrational corrections to the PV contribution are found to be only a couple of per cents. PV contributions to the ESR g-tensor are also evaluated using a series of molecules. Unfortunately, all the estimates are below the experimental limits, but PV in some of the heavier molecules comes close to the present day experimental resolution.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XML documents are becoming more and more common in various environments. In particular, enterprise-scale document management is commonly centred around XML, and desktop applications as well as online document collections are soon to follow. The growing number of XML documents increases the importance of appropriate indexing methods and search tools in keeping the information accessible. Therefore, we focus on content that is stored in XML format as we develop such indexing methods. Because XML is used for different kinds of content ranging all the way from records of data fields to narrative full-texts, the methods for Information Retrieval are facing a new challenge in identifying which content is subject to data queries and which should be indexed for full-text search. In response to this challenge, we analyse the relation of character content and XML tags in XML documents in order to separate the full-text from data. As a result, we are able to both reduce the size of the index by 5-6\% and improve the retrieval precision as we select the XML fragments to be indexed. Besides being challenging, XML comes with many unexplored opportunities which are not paid much attention in the literature. For example, authors often tag the content they want to emphasise by using a typeface that stands out. The tagged content constitutes phrases that are descriptive of the content and useful for full-text search. They are simple to detect in XML documents, but also possible to confuse with other inline-level text. Nonetheless, the search results seem to improve when the detected phrases are given additional weight in the index. Similar improvements are reported when related content is associated with the indexed full-text including titles, captions, and references. Experimental results show that for certain types of document collections, at least, the proposed methods help us find the relevant answers. Even when we know nothing about the document structure but the XML syntax, we are able to take advantage of the XML structure when the content is indexed for full-text search.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PROFESSION, PERSON AND WORLDVIEW AT A TURNING POINT A Study of University Libraries and Library Staff in the Information Age 1970 - 2005 The incongruity between commonly held ideas of libraries and librarians and the changes that have occurred in libraries since 2000 provided the impulse for this work. The object is to find out if the changes of the last few decades have penetrated to a deeper level, that is, if they have caused changes in the values and world views of library staff and management. The study focuses on Finnish university libraries and the people who work in them. The theoretical framework is provided by the concepts of world view (values, the concept of time, man and self, the experience of the supernatural and the holy, community and leadership). The viewpoint, framework and methods of the study place it in the area of Comparative Religion by applying the world view framework. The time frame is the information age, which has deeply affected Finnish society and scholarly communication from 1970 to 2005. The source material of the study comprises 30 life stories; somewhat more than half of the stories come from the University of Helsinki, and the rest from the other eight universities. Written sources include library journals, planning documents and historical accounts of libraries. The experiences and research diaries of the research worker are also used as source material. The world view questions are discussed on different levels: 1) recognition of the differences and similarities in the values of the library sphere and the university sphere, 2) examination of the world view elements, community and leadership based on the life stories, and 3) the three phases of the effects of information technology on the university libraries and those who work in them. In comparing the values of the library sphere and the university sphere, the appreciation of creative work and culture as well as the founding principles of science and research are jointly held values. The main difference between the values in the university and library spheres concerns competition and service. Competition is part of the university as an institution of research work. The core value of the library sphere is service, which creates the essential ethos of library work. The ethical principles of the library sphere also include the values of democracy and equality as well as the value of intellectual freedom. There is also a difference between an essential value in the university sphere, the value of autonomy and academic freedom on the one hand, and the global value of the library sphere - organizing operations in a practical and efficient way on the other hand. Implementing this value can also create tension between the research community and the library. Based on the life stories, similarities can be found in the values of the library staff members. The value of service seems to be of primary importance for all who are committed to library work and who find it interesting and rewarding. The service role of the library staff can be extended from information services provider to include the roles of teacher, listener and even therapist, all needed in a competitive research community. The values of democracy and equality also emerge fairly strongly. The information age development has progressed in three phases in the libraries from the 1960s onward. In the third phase beginning in the mid 1990s, the increased usage of electronic resources has set fundamental changes in motion. The changes have affected basic values and the concept of time as well as the hierarchies and valuations within the library community. In addition to and as a replacement for the library possessing a local identity and operational model, a networked, global library is emerging. The changes have brought tension both to the library communities and to the relationship between the university community and the library. Future orientation can be said to be the key concept for change; it affects where the ideals and models for operations are taken from. Future orientation manifests itself as changes in metaphors, changes in the model of a good librarian and as communal valuations. Tension between the libraries and research communities can arise if the research community pictures the library primarily as a traditional library building with a local identity, whereas the 21st century library staff and directors are affected by future orientation and membership in a networked library sphere, working proactively to develop their libraries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin film applications have become increasingly important in our search for multifunctional and economically viable technological solutions of the future. Thin film coatings can be used for a multitude of purposes, ranging from a basic enhancement of aesthetic attributes to the addition of a complex surface functionality. Anything from electronic or optical properties, to an increased catalytic or biological activity, can be added or enhanced by the deposition of a thin film, with a thickness of only a few atomic layers at the best, on an already existing surface. Thin films offer both a means of saving in materials and the possibility for improving properties without a critical enlargement of devices. Nanocluster deposition is a promising new method for the growth of structured thin films. Nanoclusters are small aggregates of atoms or molecules, ranging in sizes from only a few nanometers up to several hundreds of nanometers in diameter. Due to their large surface to volume ratio, and the confinement of atoms and electrons in all three dimensions, nanoclusters exhibit a wide variety of exotic properties that differ notably from those of both single atoms and bulk materials. Nanoclusters are a completely new type of building block for thin film deposition. As preformed entities, clusters provide a new means of tailoring the properties of thin films before their growth, simply by changing the size or composition of the clusters that are to be deposited. Contrary to contemporary methods of thin film growth, which mainly rely on the deposition of single atoms, cluster deposition also allows for a more precise assembly of thin films, as the configuration of single atoms with respect to each other is already predetermined in clusters. Nanocluster deposition offers a possibility for the coating of virtually any material with a nanostructured thin film, and therein the enhancement of already existing physical or chemical properties, or the addition of some exciting new feature. A clearer understanding of cluster-surface interactions, and the growth of thin films by cluster deposition, must, however, be achieved, if clusters are to be successfully used in thin film technologies. Using a combination of experimental techniques and molecular dynamics simulations, both the deposition of nanoclusters, and the growth and modification of cluster-assembled thin films, are studied in this thesis. Emphasis is laid on an understanding of the interaction between metal clusters and surfaces, and therein the behaviour of these clusters during deposition and thin film growth. The behaviour of single metal clusters, as they impact on clean metal surfaces, is analysed in detail, from which it is shown that there exists a cluster size and deposition energy dependent limit, below which epitaxial alignment occurs. If larger clusters are deposited at low energies, or cluster-surface interactions are weaker, non-epitaxial deposition will take place, resulting in the formation of nanocrystalline structures. The effect of cluster size and deposition energy on the morphology of cluster-assembled thin films is also determined, from which it is shown that nanocrystalline cluster-assembled films will be porous. Modification of these thin films, with the purpose of enhancing their mechanical properties and durability, without destroying their nanostructure, is presented. Irradiation with heavy ions is introduced as a feasible method for increasing the density, and therein the mechanical stability, of cluster-assembled thin films, without critically destroying their nanocrystalline properties. The results of this thesis demonstrate that nanocluster deposition is a suitable technique for the growth of nanostructured thin films. The interactions between nanoclusters and their supporting surfaces must, however, be carefully considered, if a controlled growth of cluster-assembled thin films, with precisely tailored properties, is to be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ever-increasing demand for faster computers in various areas, ranging from entertaining electronics to computational science, is pushing the semiconductor industry towards its limits on decreasing the sizes of electronic devices based on conventional materials. According to the famous law by Gordon E. Moore, a co-founder of the world s largest semiconductor company Intel, the transistor sizes should decrease to the atomic level during the next few decades to maintain the present rate of increase in the computational power. As leakage currents become a problem for traditional silicon-based devices already at sizes in the nanometer scale, an approach other than further miniaturization is needed to accomplish the needs of the future electronics. A relatively recently proposed possibility for further progress in electronics is to replace silicon with carbon, another element from the same group in the periodic table. Carbon is an especially interesting material for nanometer-sized devices because it forms naturally different nanostructures. Furthermore, some of these structures have unique properties. The most widely suggested allotrope of carbon to be used for electronics is a tubular molecule having an atomic structure resembling that of graphite. These carbon nanotubes are popular both among scientists and in industry because of a wide list of exciting properties. For example, carbon nanotubes are electronically unique and have uncommonly high strength versus mass ratio, which have resulted in a multitude of proposed applications in several fields. In fact, due to some remaining difficulties regarding large-scale production of nanotube-based electronic devices, fields other than electronics have been faster to develop profitable nanotube applications. In this thesis, the possibility of using low-energy ion irradiation to ease the route towards nanotube applications is studied through atomistic simulations on different levels of theory. Specifically, molecular dynamic simulations with analytical interaction models are used to follow the irradiation process of nanotubes to introduce different impurity atoms into these structures, in order to gain control on their electronic character. Ion irradiation is shown to be a very efficient method to replace carbon atoms with boron or nitrogen impurities in single-walled nanotubes. Furthermore, potassium irradiation of multi-walled and fullerene-filled nanotubes is demonstrated to result in small potassium clusters in the hollow parts of these structures. Molecular dynamic simulations are further used to give an example on using irradiation to improve contacts between a nanotube and a silicon substrate. Methods based on the density-functional theory are used to gain insight on the defect structures inevitably created during the irradiation. Finally, a new simulation code utilizing the kinetic Monte Carlo method is introduced to follow the time evolution of irradiation-induced defects on carbon nanotubes on macroscopic time scales. Overall, the molecular dynamic simulations presented in this thesis show that ion irradiation is a promisingmethod for tailoring the nanotube properties in a controlled manner. The calculations made with density-functional-theory based methods indicate that it is energetically favorable for even relatively large defects to transform to keep the atomic configuration as close to the pristine nanotube as possible. The kinetic Monte Carlo studies reveal that elevated temperatures during the processing enhance the self-healing of nanotubes significantly, ensuring low defect concentrations after the treatment with energetic ions. Thereby, nanotubes can retain their desired properties also after the irradiation. Throughout the thesis, atomistic simulations combining different levels of theory are demonstrated to be an important tool for determining the optimal conditions for irradiation experiments, because the atomic-scale processes at short time scales are extremely difficult to study by any other means.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusion energy is a clean and safe solution for the intricate question of how to produce non-polluting and sustainable energy for the constantly growing population. The fusion process does not result in any harmful waste or green-house gases, since small amounts of helium is the only bi-product that is produced when using the hydrogen isotopes deuterium and tritium as fuel. Moreover, deuterium is abundant in seawater and tritium can be bred from lithium, a common metal in the Earth's crust, rendering the fuel reservoirs practically bottomless. Due to its enormous mass, the Sun has been able to utilize fusion as its main energy source ever since it was born. But here on Earth, we must find other means to achieve the same. Inertial fusion involving powerful lasers and thermonuclear fusion employing extreme temperatures are examples of successful methods. However, these have yet to produce more energy than they consume. In thermonuclear fusion, the fuel is held inside a tokamak, which is a doughnut-shaped chamber with strong magnets wrapped around it. Once the fuel is heated up, it is controlled with the help of these magnets, since the required temperatures (over 100 million degrees C) will separate the electrons from the nuclei, forming a plasma. Once the fusion reactions occur, excess binding energy is released as energetic neutrons, which are absorbed in water in order to produce steam that runs turbines. Keeping the power losses from the plasma low, thus allowing for a high number of reactions, is a challenge. Another challenge is related to the reactor materials, since the confinement of the plasma particles is not perfect, resulting in particle bombardment of the reactor walls and structures. Material erosion and activation as well as plasma contamination are expected. Adding to this, the high energy neutrons will cause radiation damage in the materials, causing, for instance, swelling and embrittlement. In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, {\it i.e. interatomic potentials}, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electron-phonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage in the iron chromium alloy, essentially representing steel, showed that small additions of chromium do not noticeably affect the primary damage in iron. Since a complete assessment of the response of a material in a future full-scale fusion reactor is not achievable using only experimental techniques, molecular dynamics simulations are of vital help. This thesis has not only provided insight into complicated reactor processes and improved current methods, but also offered tools for further simulations. It is therefore an important step towards making fusion energy more than a future goal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanotechnology applications are entering the market in increasing numbers, nanoparticles being among the main classes of materials used. Particles can be used, e.g., for catalysing chemical reactions, such as is done in car exhaust catalysts today. They can also modify the optical and electronic properties of materials or be used as building blocks for thin film coatings on a variety of surfaces. To develop materials for specific applications, an intricate control of the particle properties, structure, size and shape is required. All these depend on a multitude of factors from methods of synthesis and deposition to post-processing. This thesis addresses the control of nanoparticle structure by low-energy cluster beam deposition and post-synthesis ion irradiation. Cluster deposition in high vacuum offers a method for obtaining precisely controlled cluster-assembled materials with minimal contamination. Due to the clusters small size, however, the cluster-surface interaction may drastically change the cluster properties on deposition. In this thesis, the deposition process of metal and alloy clusters on metallic surfaces is modelled using molecular dynamics simulations, and the mechanisms influencing cluster structure are identified. Two mechanisms, mechanical melting upon deposition and thermally activated dislocation motion, are shown to determine whether a deposited cluster will align epitaxially with its support. The semiconductor industry has used ion irradiation as a tool to modify material properties for decades. Irradiation can be used for doping, patterning surfaces, and inducing chemical ordering in alloys, just to give a few examples. The irradiation response of nanoparticles has, however, remained an almost uncharted territory. Although irradiation effects in nanoparticles embedded inside solid matrices have been studied, almost no work has been done on supported particles. In this thesis, the response of supported nanoparticles is studied systematically for heavy and light ion irradiation. The processes leading to damage production are identified and models are developed for both types of irradiation. In recent experiments, helium irradiation has been shown to induce a phase transformation from multiply twinned to single-crystalline nanoparticles in bimetallic alloys, but the nature of the transition has remained unknown. The alloys for which the effect has been observed are CuAu and FePt. It is shown in this thesis that transient amorphization leads to the observed transition and that while CuAu and FePt do not amorphize upon irradiation in bulk or as thin films, they readily do so as nanoparticles. This is the first time such an effect is demonstrated with supported particles, not embedded in a matrix where mixing is always an issue. An understanding of the above physical processes is essential, if nanoparticles are to be used in applications in an optimal way. This thesis clarifies the mechanisms which control particle morphology, and paves way for the synthesis of nanostructured materials tailored for specific applications.