29 resultados para distribution functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of corneal wounds requires both epithelial cell adhesion and migration. Basement membrane (BM) and extracellular matrix (ECM) proteins function in these processes via integrin and non-integrin receptors. We have studied the adhesion, spreading and migration of immortalized human corneal epithelial (HCE) cells and their interactions with the laminins (Lms), fibronectins and tenascins produced. Human corneal BM expresses Lms-332 and -511, while Lm-111 was not found in these experiments. HCE cells produced both processed and unprocessed Lm-332, whereas neither Lm-111 nor Lm-511 was produced. Because HCE cells did not produce Lm-511, although it was present in corneal BM, we suggest that Lm-511 is produced by stromal keratocytes. The adhesion of HCE cells to Lms-111, -332 and -511 was studied first by determining the receptor composition of HCE cells and then by using quantitative cell adhesion assays. Immunofluorescence studies revealed the presence of integrin α2, α3, α6, β1 and β4 subunits. Among the non-integrin receptors, Lutheran (Lu) was found on adhering HCE cells. The cells adhered via integrin α3β1 to both purified human Lms-332 and -511 as well as to endogenous Lm-332. However, only integrin β1 subunit functioned in HCE cell adhesion to mouse Lm-111. The adhesion of HCE cells to Lm-511 was also mediated by Lu. Since Lm-511 did not induce Lu into focal adhesions in HCE cells, we suggest that Lm-511 serves as an ECM ligand enabling cell motility. HCE cells produced extradomain-A fibronectin, oncofetal fibronectin and tenascin-C (Tn-C), which are also found during corneal wound healing. Monoclonal antibodies (MAbs) against integrins α5β1 and αvβ6 as well as the arginine-glycine-aspartic acid (RGD) peptide inhibited the adhesion of HCE cells to fibronectin. Although the cells did not adhere to Tn-C, they adhered to the fibronectin/Tn-C coat and were then more efficiently inhibited by the function-blocking MAbs and RGD peptide. During the early adhesion, HCE cells codeposited Lm-332 and the large subunit of tenascin-C (Tn-CL) beneath the cells via the Golgi apparatus and microtubules. Integrin β4 subunit, which is a hemidesmosomal component, did not mediate the early adhesion of HCE cells to Lm-332 or Lm-332/Tn-C. Based on these results, we suggest that the adhesion of HCE cells is initiated by Lm-332 and modulated by Tn-CL, as it has been reported to prevent the assembly of hemidesmosomes. Thereby, Tn-CL functions in the motility of HCE cells during wound healing. The different distribution of processed and unprocessed Lm-332 in adhering, spreading and migrating HCE cells suggests a distinct role for these isoforms. We conclude that the processed Lm-332 functions in cell adhesion, whereas the unprocessed Lm-332 participates in cell spreading and migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nurr1, NGFI-B and Nor1 (NR4A2, NR4A1 and NR4A3, respectively) belong to the NR4A subfamily of nuclear receptors. The NR4A receptors are orphan nuclear receptors which means that activating or repressing ligands for these receptors have not been found. NR4A expression is rapidly induced in response to various stimuli including growth factors and the parathyroid hormone (PTH). The studies concerning the NR4A receptors in the central nervous system have demonstrated that they have a major role in the development and function of the dopaminergic neurons of the midbrain and in regulating hypothalamus-pituitary-adrenal-axis. However, the peripheral functions of the NR4A family are largely unknown. Cultured mouse primary osteoblasts, a preosteoblastic cell line and several osteoblastic cell lines were used to investigate the role of NR4A receptors in osteoblasts. NR4A receptors were shown to directly bind to and activate the promoter of the osteopontin gene (OPN) in osteoblastic cells, thus regulating its expression. OPN is a major bone matrix protein expressed throughout the differentiation of preosteoblastic cells into osteoblasts. The activation of the OPN promoter was shown to be dependent on the activation function-1 located in the N-terminal part of Nurr1 and to occur in both monomeric and RXR heterodimeric forms of NR4A receptors. Furthermore, PTH was shown to upregulate OPN expression through the NR4A family. It was also demonstrated that the fibroblast growth factor-8b (FGF-8b) induces the expression of NR4A receptors in osteoblasts as immediate early genes. This induction involved phosphatidylinositol-3 kinase, protein kinase C, and mitogen activated protein kinase, which are all major pathways of FGF signalling. Nurr1 and NGFI-B were shown to induce the proliferation of preosteoblastic cells and to reduce their apoptosis. FGF-8b was shown to stimulate the proliferation of osteoblastic cells through the NR4A receptors. These results suggest that NR4A receptors have a role both in the differentiation of osteoblasts and in the proliferation and apoptosis of preosteoblast. The NR4A receptors were found to bind to the same response element on OPN as the members of the NR3B family of orphan receptors do. Mutual repression was observed between the NR4A receptors and the NR3B receptors. This repression was shown to be dependent on the DNA-binding domains of both receptor families, but to result neither from the competition of DNA binding nor from the competition for coactivators. As the repression was dependent on the relative expression levels of the NR4As and NR3Bs, it seems likely that the ratio of the receptors mediates their activity on their response elements. Rapid induction of the NR4As in response to various stimuli and differential expression of the NR3Bs can effectively control the gene activation by the NR4A receptors. NR4A receptors can bind DNA as monomers, and Nurr1 and NGFI-B can form permissive heterodimers with the retinoid X receptor (RXR). Permissive heterodimers can be activated with RXR agonists, unlike non-permissive heterodimers, which are formed by RXR and retinoic acid receptor or thyroid hormone receptor (RAR and TR, respectively). Non-permissive heterodimers can only be activated by the agonists of the heterodimerizing partner. The mechanisms behind differential response to RXR agonists have remained unresolved. As there are no activating or repressing ligands for the NR4A receptors, it would be important to find out, how they are regulated. Permissiviness of Nurr1/RXR heterodimers was linked to the N-terminal part of Nurr1 ligand-binding domain. This region has previously been shown to mediate the interaction between NRs and corepressors. Non-permissive RAR and TR, permissive Nurr1 and NGFI-B, and RXR were overexpressed with corepressors silencing mediator for retinoic acid and thyroid hormone receptors (SMRT), and with nuclear receptor corepressor in several cell lines. Nurr1 and NGFI-B were found to be repressed by SMRT. The interaction of RXR heterodimers with corepressors was weak in permissive heterodimers and much stronger in non-permissive heterodimers. Non-permissive heterodimers also released corepressors only in response to the agonist of the heterodimeric partner of RXR. In the permissive Nurr1/RXR heterodimer, however, SMRT was released following the treatment with RXR agonists. Corepressor release in response to ligands was found to differentiate permissive heterodimers from non-permissive ones. Corepressors were thus connected to the regulation of NR4A functions. In summary, the studies presented here linked the NR4A family of orphan nuclear receptors to the regulation of osteoblasts. Nurr1 and NGFI-B were found to control the proliferation and apoptosis of preosteoblasts. The studies also demonstrated that cross-talk with the NR3B receptors controls the activity of these orphan receptors. The results clarified the mechanism of permissiviness of RXR-heterodimers. New information was obtained on the regulation and functions of NR4A receptors, for which the ligands are unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ornithine decarboxylase (ODC) regulates the synthesis of polyamines which are involved in many cellular functions e.g. proliferation and differentiation. Due to its critical role, ODC is a tightly regulated enzyme by antizymes and antizyme inhibitors. If the regulation fails, the activity of ODC increases and may lead to malignant transformation of a cell. Increased ODC activity is found in many common cancers, including colon, prostate, and breast cancer. In a transformed cell, dynamics of the actin cytoskeleton is disturbed. A small G-protein, RhoA regulates organization of the cytoskeleton, and its overactivity increases malignant potential of the cell. The present results indicate that covalent attachment of polyamines by transglutaminase is a physiological means of regulating the activity of RhoA. The translocation of RhoA to the plasma membrane, where it exerts its activity is dependent on the presence of catalytically active ODC. As the overactivity of ODC and RhoA are implicated in cell transformation, the results provide a mechanistic explanation of the interrelationship between the polyamine metabolism and the reorganization of the actin cytoskeleton occurring in cancer cells. ODC and polyamines have also an important role in the function of central nervous system. They participate in the regulation of brain morphogenesis in embryos. In adult nervous tissue, polyamines regulate K+ and glutamate channels. K+ inward rectifying channels control membrane potentials and NMDA-type glutamate receptors (NMDAR) regulate synaptic plasticity. High ODC activity and polyamine levels are considered important in the development of ischemic brain damage and they are implicated in the pathogenesis of Alzheimer s disease (AD). A homolog of ODC was cloned from a human brain cDNA library, and several alternatively spliced variants were detected in human brain and testis. The novel protein was nevertheless devoid of ODC catalytic activity. It was subsequently found to be a novel inductor of ODC activity and polyamine synthesis, called antizyme inhibitor 2 (AZIN2). The accumulation of AZIN2 in vesicle-like formations along the axons and beneath the plasma membrane of neurons as well as in steroid hormone producing Leydig cells and luteal cells of the gonads implies that AZIN2 plays a role in secretion and vesicle trafficking. An accumulation of AZIN2 was detected also in specimens of AD brains. This increased expression of AZIN2 was specific for AD and was not found in brains with other neurodegenerative diseases including CADASIL or dementia with Lewy bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a rare, dominantly inherited tumor predisposition syndrome characterized by benign cutaneous and uterine (ULM) leiomyomas, and sometimes renal cell cancer (RCC). A few cases of uterine leiomyosarcoma (ULMS) have also been reported. Mutations in a nuclear gene encoding fumarate hydratase (FH), an enzyme of the mitochondrial tricarboxylic acid cycle (TCA cycle), underlie HLRCC. As a recessive condition, germline mutations in FH predispose to a neurological defect, FH deficiency (FHD). Hereditary paragangliomatosis (HPGL) is a dominant disorder associated with paragangliomas and pheochromocytomas. Inherited mutations in three genes encoding subunits of succinate dehydrogenase (SDH), also a TCA cycle enzyme, predispose to HPGL. Both FH and SDH seem to act as tumor suppressors. One of the consequences of the TCA cycle defect is abnormal activation of HIF1 pathway ( pseudohypoxia ) in the HLRCC and HPGL tumors. HIF1 drives transcription of genes encoding e.g. angiogenetic factors which can facilitate tumor growth. Recently hypoxia/HIF1 has been suggested to be one of the causes of genetic instability as well. One of the aims of this study was to broaden the clinical definers of HLRCC. To determine the cancer risk and to identify possible novel tumor types associated with FH mutations eight Finnish HLRCC/FHD families were extensively evaluated. The extension of the pedigrees and the Finnish Cancer Registry based tumor search yielded genealogical and cancer data of altogether 868 individuals. The standardized incidence ratio-based comparison of HLRCC/FHD family members with general Finnish population revealed 6.5-fold risk for RCC. Moreover, risk for ULMS was highly increased. However, according to the recent and more stringent diagnosis criteria of ULMS many of the HLRCC uterine tumors previously considered malignant are at present diagnosed as atypical or proliferative ULMs (with a low risk of recurrence). Thus, the formation of ULMS (as presently defined) in HLRCC appears to be uncommon. Though increased incidence was not observed, interestingly the genetic analyses suggested possible association of breast and bladder cancer with loss of FH. Moreover, cancer cases were exceptionally detected in an FHD family. Another clinical finding was the conventional (clear cell) type RCC of a young Spanish HLRCC patient. Conventional RCC is distinct from the types previously observed in this syndrome but according to these results, FH mutation may underlie some of young conventional cancer cases. Secondly, the molecular pathway from defective TCA cycle to tumor formation was intended to clarify. Since HLRCC and HPGL tumors display abnormally activated HIF1, the hypothesis on the link between HIF1/hypoxia and genetic instability was of interest to study in HLRCC and HPGL tumor material. HIF1α (a subunit of HIF1) stabilization was confirmed in the majority of the specimens. However, no repression of MSH2, a protein of DNA mismatch repair system, or microsatellite instability (MSI), an indicator of genetic instability, was observed. Accordingly, increased instability seems not to play a role in the tumorigenesis of pseudohypoxic TCA cycle-deficient tumors. Additionally, to study the putative alternative functions of FH, a recently identified alternative FH transcript (FHv) was characterized. FHv was found to contain instead of exon 1, an alternative exon 1b. Differential subcellular distribution, lack of FH enzyme activity, low mRNA expression compared to FH, and induction by cellular stress suggest FHv to have a role distinct from FH, for example in apoptosis or survival. However, the physiological significance of FHv requires further elucidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latent transforming growth factor-beta (TGF-beta) binding proteins (LTBPs) -1, -3 and -4 are ECM components whose major function is to augment the secretion and matrix targeting of TGF-beta, a multipotent cytokine. LTBP-2 does not bind small latent TGF-beta but has suggested functions as a structural protein in ECM microfibrils. In the current work we focused on analyzing possible adhesive functions of LTBP-2 as well as on characterizing the kinetics and regulation of LTBP-2 secretion and ECM deposition. We also explored the role of TGF-beta binding LTBPs in endothelial cells activated to mimic angiogenesis as well as in malignant mesothelioma. We found that, unlike most adherent cells, several melanoma cell lines efficiently adhered to purified recombinant LTBP-2. Further characterization revealed that the adhesion was mediated by alpha3beta1 and alpha6beta1 integrins. Heparin also inhibited the melanoma cell adhesion suggesting a role for heparan sulphate proteoglycans. LTBP-2 was also identified as a haptotactic substrate for melanoma cell migration. We used cultured human embryonic lung fibroblasts to analyze the temporal and spatial association of LTBP-2 into ECM. By We found that LTBP-2 was efficiently assembled to the ECM only in confluent cultures following the deposition of fibronectin (FN) and fibrillin-1. In early, subconfluent cultures it remained primarily in soluble form after secretion. LTBP-2 colocalized transiently with FN and fibrillin-1. Silencing of fibrillin-1 expression by lentiviral shRNAs profoundly disrupted the deposition of LTBP-2 indicating that the ECM association of LTBP-2 depends on a pre-formed fibrillin-1 network. Considering the established role of TGF-beta as a regulator of angiogenesis we induced morphological activation of endothelial cells by phorbol 12-myristate 13-acetate (PMA) and followed the fate of LTBP-1 in the endothelial ECM. This resulted in profound proteolytic processing of LTBP-1 and release of latent TGF-beta complexes from the ECM. The processing was coupled with increased activation of MT-MMPs and specific upregulation of MT1-MMP. The major role of MT1-MMP in the proteolysis of LTBP-1 was confirmed by suppressing the expression with lentivirally induced short-hairpin RNAs as well as by various metalloproteinases inhibitors. TGF-beta can promote tumorigenesis of malignant mesothelioma (MM), which is an aggressive tumor of the pleura with poor prognosis. TGF-beta activity was analyzed in a panel of MM tumors by immunohistochemical staining of phosphorylated Smad-2 (P-Smad2). The tumor cells were strongly positive for P-Smad2 whereas LTBP-1 immunoreactivity was abundant in the stroma, and there was a negative correlation between LTBP-1 and P-Smad2 staining. In addition, the high P-Smad2 immunoreactivity correlated with shorter survival of patients. mRNA analysis revealed that TGF-beta1 was the most highly expressed isoform in both normal human pleura and MM tissue. LTBP-1 and LTBP-3 were both abundantly expressed. LTBP-1 was the predominant isoform in established MM cell lines whereas the expression of LTBP-3 was high in control cells. Suppression of LTBP-3 expression by siRNAs resulted in increased TGF-beta activity in MM cell lines accompanied by decreased proliferation. Our results suggest that decreased expression of LTBP-3 in MM could alter the targeting of TGF-beta to the ECM and lead to its increased activation. The current work emphasizes the coordinated process of the assembly and appropriate targeting of LTBPs with distinct adhesive or cytokine harboring properties into the ECM. The hierarchical assembly may have implications in the modulation of signaling events during morphogenesis and tissue remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyamines are organic polycations that participate in various physiological functions, including cell proliferation, differentiation and apoptosis. Cellular polyamines originate from endogenous biosynthesis and exogenous sources. Their subcellular pool is under strict control, achieved by regulating their uptake and metabolism. Polyamine-induced proteins called antizymes (AZ) act as key regulators of intracellular polyamine concentration. They regulate both the transport of polyamines and the activity and degradation of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. AZs themselves are negatively regulated by antizyme inhibitor (AZIN). AZIN functions as a positive regulator of cellular polyamine homeostasis, which by binding to AZs reactivates ODC and induces the uptake of polyamines. In various pathological conditions, including cancer, polyamine levels are misregulated. Polyamine homeostasis has therefore become an attractive target for therapeutic interventions and it is thus crucial to characterize the molecular basis underlying the homeostatic regulation. A novel human AZIN-resembling protein was previously identified in our group. The purpose of this study was to elucidate the function and distribution of this protein, termed as an antizyme inhibitor 2 (AZIN2). According to my results, AZIN2 functions as a novel regulator of polyamine homeostasis. It shows no enzymatic activity, but instead it binds AZs and negates their activity, which subsequently leads to reactivation of ODC and inhibition of its degradation. Expression of AZIN2 is restricted to terminally differentiated cells, such as mast cells (MC) and neurosecretory cells. In these actively secreting cell types, AZIN2 localizes to subcellular vesicles or granules where its function is important for the vesicle-mediated secretion. In MCs, AZIN2 localizes to the serotonin-containing subset of MC granules, and its expression is coupled to MC activation. The functional role of polyamines as potential mediators of MC activity was also investigated, and it was observed that the secretion of serotonin is selectively dependent on activation of ODC. In neurosecretory cells, AZIN2-positive vesicles localize mainly to the trans-Golgi network (TGN). Depletion of AZIN2 or cellular polyamines causes selective fragmentation of the TGN and retards secretion of proteins. Since addition of exogenous polyamines reverses these effects, the data indicate that AZIN2 and its downstream effectors, polyamines, are functionally implicated in the regulation of secretory vesicle transport. My studies therefore reveal a novel function for polyamines as modulators of both constitutive and regulated secretion. Based on the results, I propose that the role of AZIN2 is to act as a local in situ activator of polyamine biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epilysin (MMP-28) is the most recently identified member of the matrix metalloproteinase (MMP) family of extracellular proteases. Together these enzymes are capable of degrading almost all components of the extracellular matrix (ECM) and are thus involved in important biological processes such as development, wound healing and immune functions, but also in pathological processes such as tumor invasion, metastasis and arthritis. MMPs do not act solely by degrading the ECM. They also regulate cell behavior by releasing growth factors and biologically active peptides from the ECM, by modulating cell surface receptors and adhesion molecules and by regulating the activity of many important mediators in inflammatory pathways. The aim of this study was to define the unique role of epilysin within the MMP-family, to elucidate how and when it is expressed and how its catalytic activity is regulated. To gain information on its essential functions and substrates, the specific aim was to characterize how epilysin affects the phenotype of epithelial cells, where it is biologically expressed. During the course of the study we found that the epilysin promoter contains a well conserved GT-box that is essential for the basic expression of this gene. Transcription factors Sp1 and Sp3 bind this sequence and could hence regulate both the basic and cell type and differentiation stage specific expression of epilysin. We cloned mouse epilysin cDNA and found that epilysin is well conserved between human and mouse genomes and that epilysin is glycosylated and activated by furin. Similarly to in human tissues, epilysin is normally expressed in a number of mouse tissues. The expression pattern differs from most other MMPs, which are expressed only in response to injury or inflammation and in pathological processes like cancer. These findings implicate that epilysin could be involved in tissue homeostasis, perhaps fine-tuning the phenotype of epithelial cells according to signals from the ECM. In view of these results, it was unexpected to find that epilysin can induce a stable epithelial to mesenchymal transition (EMT) when overexpressed in epithelial lung carcinoma cells. Transforming growth factor b (TGF-b) was recognized as a crucial mediator of this process, which was characterized by the loss of E-cadherin mediated cell-cell adhesion, elevated expression of gelatinase B and MT1-MMP and increased cell migration and invasion into collagen I gels. We also observed that epilysin is bound to the surface of epithelial cells and that this interaction is lost upon cell transformation and is susceptible to degradation by membrane type-1-MMP (MT1-MMP). The wide expression of epilysin under physiological conditions implicates that its effects on epithelial cell phenotype in vivo are not as dramatic as seen in our in vitro cell system. Nevertheless, current results indicate a possible interaction between epilysin and TGF-b also under physiological circumstances, where epilysin activity may not induce EMT but, instead, trigger less permanent changes in TGF-b signaling and cell motility. Epilysin may thus play an important role in TGF-b regulated events such as wound healing and inflammation, processes where involvement of epilysin has been indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenium (Se) has been demonstrated to be an essential trace element for maintenance of animal and human health. Although it has not been confirmed to be an essential micronutrient in higher plants, there is increasing evidence that Se functions as an antioxidant in plants. Selenium has been shown to exert a beneficial effect on crop growth and promotes stress tolerance at low concentrations. However, the specific physiological mechanisms that underlie the positive effects of Se in plants have not been clearly elucidated. The aims of this study were to determine the Se concentration in potato (Solanum tuberosum L.) and the effects of Se on the accumulation of carbohydrates, growth and yield in potato plants. An additional aim was to study the impact of Se on the total glycoalkaloid concentration in immature potato tubers. The distribution of Se in different biochemical Se fractions and the effect of storage on the Se concentration were studied in Se-enriched tubers. Furthermore, the effect of Se on raw darkening and translocation of Se from seed tubers to the next tuber generation was investigated. Due to the established anti-ageing properties of Se, it was of interest to study if Se affects physiological age and growth vigour of seed tubers. The Se concentrations in the upper leaves, roots, stolons and tubers of potato increased with increasing Se supplementation. The highest Se concentration was reached in young upper leaves, roots and stolons, indicating that added selenate was efficiently utilized and taken up at an early stage. During the growing period the Se concentration declined in the aerial parts, roots and stolons of potato plants whereas an intensive accumulation took place in immature and mature tubers. Selenium increased carbohydrate accumulation in the young upper leaves and in stolons, roots and tubers at maturity. This could not be explained by increased production of photoassimilates as net photosynthesis did not differ among Se treatments. The Se treated plants produced higher tuber yields than control plants, and at the highest Se concentration (0.3 mg kg-1) lower numbers of larger tubers were harvested. Increased yield of Se treated plants suggested that Se may enhance the allocation of photoassimilates for tuber growth, acting as a strong sink for both Se and for carbohydrates. Similarly as for other plant species, the positive impact of Se on the yield of potato plants could be related to its antioxidative effect in delaying senescence. The highest Se supplementation (0.9 mg kg-1) slightly decreased the glycoalkaloid concentration of immature tubers. However, at this level the Se concentration in tubers was about 20 µg g-1 DW. A 100 g consumption of potato would provide about 500 mg of Se, which exceeds the upper safe intake level of 400 µg per day for human dietary. The low Se applications (0.0035 and 0.1 mg kg-1) diminished and retarded the degree of raw darkening in tubers stored for one and eight months, which can be attributed to the antioxidative properties of Se. The storage for 1 to 12 months did not affect the Se concentrations of tubers. In the Se enriched tubers Se was allocated to the organic Se fraction, indicating that it was incorporated into organic compounds in tubers. Elevated Se concentration in the next-generation tubers produced by the Se enriched seed tubers indicated that Se could be translocated from the seed tubers to the progeny. In the seed tubers stored for 8 months, at high levels, Se had some positive effects on the growth vigour of sprouts, but Se had no consistent effect on the growth vigour of seed tubers of optimal physiological age. These results indicate that Se is a beneficial trace element in potato plants that exerts a positive effect on yield formation and improves the processing and storage quality of table potato tubers. These positive effects of Se are, however, dependent on the Se concentration and the age of the potato plant and tuber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural biology is a branch of science that concentrates on the relationship between the structure and function of biological macromolecules. The prevalence of a large number of three dimensional structures offers effective tools for bio-scientists to understand the living world. Actin is the most abundant cellular protein and one of its main functions is to produce movement in living cells. Actin forms filaments that are dynamic and which are regulated by a number of different proteins. A class of these regulatory proteins contains actin depolymerizing factor homology (ADF-H) domains. These directly interact with actin through their ADF-H domains. Although ADF-H domains possess very similar three dimensional structures to one another, they vary in their functional properties. One example of this is the ability to bind to actin monomers or filaments. During the work for this thesis two structures of ADF-H domains were solved by nuclear magnetic resonance spectroscopy (NMR). The elucidated structures help us understand the binding specificities of the ADF-H family members.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi- and intralake datasets of fossil midge assemblages in surface sediments of small shallow lakes in Finland were studied to determine the most important environmental factors explaining trends in midge distribution and abundance. The aim was to develop palaeoenvironmental calibration models for the most important environmental variables for the purpose of reconstructing past environmental conditions. The developed models were applied to three high-resolution fossil midge stratigraphies from southern and eastern Finland to interpret environmental variability over the past 2000 years, with special focus on the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and recent anthropogenic changes. The midge-based results were compared with physical properties of the sediment, historical evidence and environmental reconstructions based on diatoms (Bacillariophyta), cladocerans (Crustacea: Cladocera) and tree rings. The results showed that the most important environmental factor controlling midge distribution and abundance along a latitudinal gradient in Finland was the mean July air temperature (TJul). However, when the dataset was environmentally screened to include only pristine lakes, water depth at the sampling site became more important. Furthermore, when the dataset was geographically scaled to southern Finland, hypolimnetic oxygen conditions became the dominant environmental factor. The results from an intralake dataset from eastern Finland showed that the most important environmental factors controlling midge distribution within a lake basin were river contribution, water depth and submerged vegetation patterns. In addition, the results of the intralake dataset showed that the fossil midge assemblages represent fauna that lived in close proximity to the sampling sites, thus enabling the exploration of within-lake gradients in midge assemblages. Importantly, this within-lake heterogeneity in midge assemblages may have effects on midge-based temperature estimations, because samples taken from the deepest point of a lake basin may infer considerably colder temperatures than expected, as shown by the present test results. Therefore, it is suggested here that the samples in fossil midge studies involving shallow boreal lakes should be taken from the sublittoral, where the assemblages are most representative of the whole lake fauna. Transfer functions between midge assemblages and the environmental forcing factors that were significantly related with the assemblages, including mean air TJul, water depth, hypolimnetic oxygen, stream flow and distance to littoral vegetation, were developed using weighted averaging (WA) and weighted averaging-partial least squares (WA-PLS) techniques, which outperformed all the other tested numerical approaches. Application of the models in downcore studies showed mostly consistent trends. Based on the present results, which agreed with previous studies and historical evidence, the Medieval Climate Anomaly between ca. 800 and 1300 AD in eastern Finland was characterized by warm temperature conditions and dry summers, but probably humid winters. The Little Ice Age (LIA) prevailed in southern Finland from ca. 1550 to 1850 AD, with the coldest conditions occurring at ca. 1700 AD, whereas in eastern Finland the cold conditions prevailed over a longer time period, from ca. 1300 until 1900 AD. The recent climatic warming was clearly represented in all of the temperature reconstructions. In the terms of long-term climatology, the present results provide support for the concept that the North Atlantic Oscillation (NAO) index has a positive correlation with winter precipitation and annual temperature and a negative correlation with summer precipitation in eastern Finland. In general, the results indicate a relatively warm climate with dry summers but snowy winters during the MCA and a cool climate with rainy summers and dry winters during the LIA. The results of the present reconstructions and the forthcoming applications of the models can be used in assessments of long-term environmental dynamics to refine the understanding of past environmental reference conditions and natural variability required by environmental scientists, ecologists and policy makers to make decisions concerning the presently occurring global, regional and local changes. The developed midge-based models for temperature, hypolimnetic oxygen, water depth, littoral vegetation shift and stream flow, presented in this thesis, are open for scientific use on request.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of the environmental factors controlling earth surface processes and landform patterns is one of the central themes in physical geography. However, the identification of the main drivers of the geomorphological phenomena is often challenging. Novel spatial analysis and modelling methods could provide new insights into the process-environment relationships. The objective of this research was to map and quantitatively analyse the occurrence of cryogenic phenomena in subarctic Finland. More precisely, utilising a grid-based approach the distribution and abundance of periglacial landforms were modelled to identify important landscape scale environmental factors. The study was performed using a comprehensive empirical data set of periglacial landforms from an area of 600 km2 at a 25-ha resolution. The utilised statistical methods were generalized linear modelling (GLM) and hierarchical partitioning (HP). GLMs were used to produce distribution and abundance models and HP to reveal independently the most likely causal variables. The GLM models were assessed utilising statistical evaluation measures, prediction maps, field observations and the results of HP analyses. A total of 40 different landform types and subtypes were identified. Topographical, soil property and vegetation variables were the primary correlates for the occurrence and cover of active periglacial landforms on the landscape scale. In the model evaluation, most of the GLMs were shown to be robust although the explanation power, prediction ability as well as the selected explanatory variables varied between the models. The great potential of the combination of a spatial grid system, terrain data and novel statistical techniques to map the occurrence of periglacial landforms was demonstrated in this study. GLM proved to be a useful modelling framework for testing the shapes of the response functions and significances of the environmental variables and the HP method helped to make better deductions of the important factors of earth surface processes. Hence, the numerical approach presented in this study can be a useful addition to the current range of techniques available to researchers to map and monitor different geographical phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of this dissertation is to study globally defined bounded p-harmonic functions on Cartan-Hadamard manifolds and Gromov hyperbolic metric measure spaces. Such functions are constructed by solving the so called Dirichlet problem at infinity. This problem is to find a p-harmonic function on the space that extends continuously to the boundary at inifinity and obtains given boundary values there. The dissertation consists of an overview and three published research articles. In the first article the Dirichlet problem at infinity is considered for more general A-harmonic functions on Cartan-Hadamard manifolds. In the special case of two dimensions the Dirichlet problem at infinity is solved by only assuming that the sectional curvature has a certain upper bound. A sharpness result is proved for this upper bound. In the second article the Dirichlet problem at infinity is solved for p-harmonic functions on Cartan-Hadamard manifolds under the assumption that the sectional curvature is bounded outside a compact set from above and from below by functions that depend on the distance to a fixed point. The curvature bounds allow examples of quadratic decay and examples of exponential growth. In the final article a generalization of the Dirichlet problem at infinity for p-harmonic functions is considered on Gromov hyperbolic metric measure spaces. Existence and uniqueness results are proved and Cartan-Hadamard manifolds are considered as an application.