62 resultados para Actin Nucleation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric aerosol particles have a strong impact on the global climate. A deep understanding of the physical and chemical processes affecting the atmospheric aerosol climate system is crucial in order to describe those processes properly in global climate models. Besides the climatic effects, aerosol particles can deteriorate e.g. visibility and human health. Nucleation is a fundamental step in atmospheric new particle formation. However, details of the atmospheric nucleation mechanisms have remained unresolved. The main reason for that has been the non-existence of instruments capable of measuring neutral newly formed particles in the size range below 3 nm in diameter. This thesis aims to extend the detectable particle size range towards close-to-molecular sizes (~1nm) of freshly nucleated clusters, and by direct measurement obtain the concentrations of sub-3 nm particles in atmospheric environment and in well defined laboratory conditions. In the work presented in this thesis, new methods and instruments for the sub-3 nm particle detection were developed and tested. The selected approach comprises four different condensation based techniques and one electrical detection scheme. All of them are capable to detect particles with diameters well below 3 nm, some even down to ~1 nm. The developed techniques and instruments were deployed in the field measurements as well as in laboratory nucleation experiments. Ambient air studies showed that in a boreal forest environment a persistent population of 1-2 nm particles or clusters exists. The observation was done using 4 different instruments showing a consistent capability for the direct measurement of the atmospheric nucleation. The results from the laboratory experiments showed that sulphuric acid is a key species in the atmospheric nucleation. The mismatch between the earlier laboratory data and ambient observations on the dependency of nucleation rate on sulphuric acid concentration was explained. The reason was shown to be associated in the inefficient growth of the nucleated clusters and in the insufficient detection efficiency of particle counters used in the previous experiments. Even though the exact molecular steps of nucleation still remain an open question, the instrumental techniques developed in this work as well as their application in laboratory and ambient studies opened a new view into atmospheric nucleation and prepared the way for investigating the nucleation processes with more suitable tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleation is the first step of a first order phase transition. A new phase is always sprung up in nucleation phenomena. The two main categories of nucleation are homogeneous nucleation, where the new phase is formed in a uniform substance, and heterogeneous nucleation, when nucleation occurs on a pre-existing surface. In this thesis the main attention is paid on heterogeneous nucleation. This thesis wields the nucleation phenomena from two theoretical perspectives: the classical nucleation theory and the statistical mechanical approach. The formulation of the classical nucleation theory relies on equilibrium thermodynamics and use of macroscopically determined quantities to describe the properties of small nuclei, sometimes consisting of just a few molecules. The statistical mechanical approach is based on interactions between single molecules, and does not bear the same assumptions as the classical theory. This work gathers up the present theoretical knowledge of heterogeneous nucleation and utilizes it in computational model studies. A new exact molecular approach on heterogeneous nucleation was introduced and tested by Monte Carlo simulations. The results obtained from the molecular simulations were interpreted by means of the concepts of the classical nucleation theory. Numerical calculations were carried out for a variety of substances nucleating on different substances. The classical theory of heterogeneous nucleation was employed in calculations of one-component nucleation of water on newsprint paper, Teflon and cellulose film, and binary nucleation of water-n-propanol and water-sulphuric acid mixtures on silver nanoparticles. The results were compared with experimental results. The molecular simulation studies involved homogeneous nucleation of argon and heterogeneous nucleation of argon on a planar platinum surface. It was found out that the use of a microscopical contact angle as a fitting parameter in calculations based on the classical theory of heterogeneous nucleation leads to a fair agreement between the theoretical predictions and experimental results. In the presented cases the microscopical angle was found to be always smaller than the contact angle obtained from macroscopical measurements. Furthermore, molecular Monte Carlo simulations revealed that the concept of the geometrical contact parameter in heterogeneous nucleation calculations can work surprisingly well even for very small clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A better understanding of the limiting step in a first order phase transition, the nucleation process, is of major importance to a variety of scientific fields ranging from atmospheric sciences to nanotechnology and even to cosmology. This is due to the fact that in most phase transitions the new phase is separated from the mother phase by a free energy barrier. This barrier is crossed in a process called nucleation. Nowadays it is considered that a significant fraction of all atmospheric particles is produced by vapor-to liquid nucleation. In atmospheric sciences, as well as in other scientific fields, the theoretical treatment of nucleation is mostly based on a theory known as the Classical Nucleation Theory. However, the Classical Nucleation Theory is known to have only a limited success in predicting the rate at which vapor-to-liquid nucleation takes place at given conditions. This thesis studies the unary homogeneous vapor-to-liquid nucleation from a statistical mechanics viewpoint. We apply Monte Carlo simulations of molecular clusters to calculate the free energy barrier separating the vapor and liquid phases and compare our results against the laboratory measurements and Classical Nucleation Theory predictions. According to our results, the work of adding a monomer to a cluster in equilibrium vapour is accurately described by the liquid drop model applied by the Classical Nucleation Theory, once the clusters are larger than some threshold size. The threshold cluster sizes contain only a few or some tens of molecules depending on the interaction potential and temperature. However, the error made in modeling the smallest of clusters as liquid drops results in an erroneous absolute value for the cluster work of formation throughout the size range, as predicted by the McGraw-Laaksonen scaling law. By calculating correction factors to Classical Nucleation Theory predictions for the nucleation barriers of argon and water, we show that the corrected predictions produce nucleation rates that are in good comparison with experiments. For the smallest clusters, the deviation between the simulation results and the liquid drop values are accurately modelled by the low order virial coefficients at modest temperatures and vapour densities, or in other words, in the validity range of the non-interacting cluster theory by Frenkel, Band and Bilj. Our results do not indicate a need for a size dependent replacement free energy correction. The results also indicate that Classical Nucleation Theory predicts the size of the critical cluster correctly. We also presents a new method for the calculation of the equilibrium vapour density, surface tension size dependence and planar surface tension directly from cluster simulations. We also show how the size dependence of the cluster surface tension in equimolar surface is a function of virial coefficients, a result confirmed by our cluster simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actin stress fibers are dynamic structures in the cytoskeleton, which respond to mechanical stimuli and affect cell motility, adhesion and invasion of cancer cells. In nonmuscle cells, stress fibers have been subcategorized to three distinct stress fiber types: dorsal and ventral stress fibers and transverse arcs. These stress fibers are dissimilar in their subcellular localization, connection to substratum as well as in their dynamics and assembly mechanisms. Still uncharacterized is how they differ in their function and molecular composition. Here, I have studied involvement of nonmuscle alpha-actinin-1 and -4 in regulating distinct stress fibers as well as their localization and function in human U2OS osteosarcoma cells. Except for the correlation of upregulation of alpha-actinin-4 in invasive cancer types very little is known about whether these two actinins are redundant or have specific roles. The availability of highly specific alpha-actinin-1 antibody generated in the lab, revealed localization of alpha-actinin-1 along all three categories of stress fibers while alphaactinin-4 was detected at cell edge, distal ends of stress fibers as well as perinuclear regions. Strikingly, by utilizing RNAi-mediated gene silencing of alpha-actinin-1 resulted in specific loss of dorsal stress fibers and relocalization of alpha-actinin-4 to remaining transverse arcs and ventral stress fibers. Unexpectedly, aberrant migration was not detected in cells lacking alpha-actinin-1 even though focal adhesions were significantly smaller and fewer. Whereas, silencing of alpha-actinin-4 noticeably affected overall cell migration. In summary, as part of my master thesis study I have been able to demonstrate distinct localization and functional patterns for both alpha-actinin-1 and -4. I have identified alpha-actinin-1 to be a selective dorsal stress fiber crosslinking protein as well as to be required for focal adhesion maturation, while alpha-actinin-4 was demonstrated to be fundamental for cell migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleation is the first step in a phase transition where small nuclei of the new phase start appearing in the metastable old phase, such as the appearance of small liquid clusters in a supersaturated vapor. Nucleation is important in various industrial and natural processes, including atmospheric new particle formation: between 20 % to 80 % of atmospheric particle concentration is due to nucleation. These atmospheric aerosol particles have a significant effect both on climate and human health. Different simulation methods are often applied when studying things that are difficult or even impossible to measure, or when trying to distinguish between the merits of various theoretical approaches. Such simulation methods include, among others, molecular dynamics and Monte Carlo simulations. In this work molecular dynamics simulations of the homogeneous nucleation of Lennard-Jones argon have been performed. Homogeneous means that the nucleation does not occur on a pre-existing surface. The simulations include runs where the starting configuration is a supersaturated vapor and the nucleation event is observed during the simulation (direct simulations), as well as simulations of a cluster in equilibrium with a surrounding vapor (indirect simulations). The latter type are a necessity when the conditions prevent the occurrence of a nucleation event in a reasonable timeframe in the direct simulations. The effect of various temperature control schemes on the nucleation rate (the rate of appearance of clusters that are equally able to grow to macroscopic sizes and to evaporate) was studied and found to be relatively small. The method to extract the nucleation rate was also found to be of minor importance. The cluster sizes from direct and indirect simulations were used in conjunction with the nucleation theorem to calculate formation free energies for the clusters in the indirect simulations. The results agreed with density functional theory, but were higher than values from Monte Carlo simulations. The formation energies were also used to calculate surface tension for the clusters. The sizes of the clusters in the direct and indirect simulations were compared, showing that the direct simulation clusters have more atoms between the liquid-like core of the cluster and the surrounding vapor. Finally, the performance of various nucleation theories in predicting simulated nucleation rates was investigated, and the results among other things highlighted once again the inadequacy of the classical nucleation theory that is commonly employed in nucleation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol particles deteriorate air quality, atmospheric visibility and our health. They affect the Earth s climate by absorbing and scattering sunlight, forming clouds, and also via several feed-back mechanisms. The net effect on the radiative balance is negative, i.e. cooling, which means that particles counteract the effect of greenhouse gases. However, particles are one of the poorly known pieces in the climate puzzle. Some of the airborne particles are natural, some anthropogenic; some enter the atmosphere in particle form, while others form by gas-to-particle conversion. Unless the sources and dynamical processes shaping the particle population are quantified, they cannot be incorporated into climate models. The molecular level understanding of new particle formation is still inadequate, mainly due to the lack of suitable measurement techniques to detect the smallest particles and their precursors. This thesis has contributed to our ability to measure newly formed particles. Three new condensation particle counter applications for measuring the concentration of nano-particles were developed. The suitability of the methods for detecting both charged and electrically neutral particles and molecular clusters as small as 1 nm in diameter was thoroughly tested both in laboratory and field conditions. It was shown that condensation particle counting has reached the size scale of individual molecules, and besides measuring the concentration they can be used for getting size information. In addition to atmospheric research, the particle counters could have various applications in other fields, especially in nanotechnology. Using the new instruments, the first continuous time series of neutral sub-3 nm particle concentrations were measured at two field sites, which represent two different kinds of environments: the boreal forest and the Atlantic coastline, both of which are known to be hot-spots for new particle formation. The contribution of ions to the total concentrations in this size range was estimated, and it could be concluded that the fraction of ions was usually minor, especially in boreal forest conditions. Since the ionization rate is connected to the amount of cosmic rays entering the atmosphere, the relative contribution of neutral to charged nucleation mechanisms extends beyond academic interest, and links the research directly to current climate debate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumorigenesis is a consequence of inactivating mutations of tumor suppressor genes and activating mutations of proto-oncogenes. Most of the mutations compromise cell autonomous and non-autonomous restrains on cell proliferation by modulating kinase signal transduction pathways. LKB1 is a tumor suppressor kinase whose sporadic mutations are frequently found in non-small cell lung cancer and cervical cancer. Germ-line mutations in the LKB1 gene lead to Peutz-Jeghers syndrome with an increased risk of cancer and development of benign gastrointestinal hamartomatous polyps consisting of hyperproliferative epithelia and prominent stromal stalk composed of smooth muscle cell lineage cells. The tumor suppressive function of LKB1 is possibly mediated by 14 identified LKB1 substrate kinases, whose activation is dependent on the LKB1 kinase complex. The aim of my thesis was to identify cell signaling pathways crucial for tumor suppression by LKB1. Re-introduction of LKB1 expression in the melanoma cell line G361 induces cell cycle arrest. Here we demonstrated that restoring the cytoplasmic LKB1 was sufficient to induce the cell cycle arrest in a tumor suppressor p53 dependent manner. To address the role of LKB1 in gastrointestinal tumor suppression, Lkb1 was deleted specifically in SMC lineage in vivo, which was sufficient to cause Peutz-Jeghers syndrome type polyposis. Studies on primary myofibroblasts lacking Lkb1 suggest that the regulation of TGFβ signaling, actin stress fibers and smooth muscle cell lineage differentiation are candidate mechanisms for tumor suppression by LKB1 in the gastrointestinal stroma. Further studies with LKB1 substrate kinase NUAK2 in HeLa cells indicate that NUAK2 is part of a positive feedback loop by which NUAK2 expression promotes actin stress fiber formation and, reciprocally the induction of actin stress fibers promote NUAK2 expression. Findings in this thesis suggest that p53 and TGFβ signaling pathways are potential mediators of tumor suppression by LKB1. An indication of NUAK2 in the promotion of actin stress fibers suggests that NUAK2 is one possible mediator of LKB1 dependent TGFβ signaling and smooth muscle cell lineage differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Floating in the air that surrounds us is a number of small particles, invisible to the human eye. The mixture of air and particles, liquid or solid, is called an aerosol. Aerosols have significant effects on air quality, visibility and health, and on the Earth's climate. Their effect on the Earth's climate is the least understood of climatically relevant effects. They can scatter the incoming radiation from the Sun, or they can act as seeds onto which cloud droplets are formed. Aerosol particles are created directly, by human activity or natural reasons such as breaking ocean waves or sandstorms. They can also be created indirectly as vapors or very small particles are emitted into the atmosphere and they combine to form small particles that later grow to reach climatically or health relevant sizes. The mechanisms through which those particles are formed is still under scientific discussion, even though this knowledge is crucial to make air quality or climate predictions, or to understand how aerosols will influence and will be influenced by the climate's feedback loops. One of the proposed mechanisms responsible for new particle formation is ion-induced nucleation. This mechanism is based on the idea that newly formed particles were ultimately formed around an electric charge. The amount of available charges in the atmosphere varies depending on radon concentrations in the soil and in the air, as well as incoming ionizing radiation from outer space. In this thesis, ion-induced nucleation is investigated through long-term measurements in two different environments: in the background site of Hyytiälä and in the urban site that is Helsinki. The main conclusion of this thesis is that ion-induced nucleation generally plays a minor role in new particle formation. The fraction of particles formed varies from day to day and from place to place. The relative importance of ion-induced nucleation, i.e. the fraction of particles formed through ion-induced nucleation, is bigger in cleaner areas where the absolute number of particles formed is smaller. Moreover, ion-induced nucleation contributes to a bigger fraction of particles on warmer days, when the sulfuric acid and water vapor saturation ratios are lower. This analysis will help to understand the feedbacks associated with climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In epithelial-mesenchymal transition (EMT), epithelial cells acquire traits typical for mesenchymal cells, dissociate their cell-cell junctions and gain the ability to migrate. EMT is essential during embryogenesis, but may also mediate cancer progression. Basement membranes are sheets of extracellular matrix that support epithelial cells. They have a major role in maintaining the epithelial phenotype and, in cancer, preventing cell migration, invasion and metastasis. Laminins are the main components of basement membranes and may actively contribute to malignancy. We first evaluated the differences between cell lines obtained from oral squamous cell carcinoma and its recurrence. As the results indicated a change from epithelial to fibroblastoid morphology, E-cadherin to N-cadherin switch, and change in expression of cytokeratins to vimentin intermediate filaments, we concluded that these cells had undergone EMT. We further induced EMT in primary tumour cells to gain knowledge of the effects of transcription factor Snail in this cell model. The E-cadherin repressors responsible for the EMT in these cells were ZEB-1, ZEB-2 and Snail, and ectopic expression of Snail was able to augment the levels of ZEB-1 and ZEB-2. We produced and characterized two monoclonal antibodies that specifically recognized Snail in cell lines and patient samples. By immunohistochemistry, Snail protein was found in mesenchymal tissues during mouse embryonal development, in fibroblastoid cells of healing skin wounds and in fibromatosis and sarcoma specimens. Furthermore, Snail localized to the stroma and borders of tumour cell islands in colon adenocarcinoma, and in laryngeal and cervical squamous cell carcinomas. Immunofluorescence labellings, immunoprecipitations and Northern and Western blots showed that EMT induced a progressive downregulation of laminin-332 and laminin-511 and, on the other hand, an induction of mesenchymal laminin-411. Chromatin immunoprecipitation revealed that Snail could directly bind upstream to the transcription start sites of both laminin α5 and α4 chain genes, thus regulating their expression. The levels of integrin α6β4, a receptor for laminin-332, as well as the hemidesmosomal complex proteins HD1/plectin and BP180 were downregulated in EMT-experienced cells. The expression of Lutheran glycoprotein, a specific receptor for laminin-511, was diminished, whereas the levels of integrins α6β1 and α1β1 and integrin-linked kinase were increased. In quantitative cell adhesion assays, the cells adhered potently to laminin-511 and fibronectin, but only marginally to laminin-411. Western blots and immunoprecipitations indicated that laminin-411 bound to fibronectin and could compromise cell adhesion to fibronectin in a dose-dependent manner. EMT induced a highly migratory and invasive tendency in oral squamous carcinoma cells. Actin-based adhesion and invasion structures, podosomes and invadopodia, were detected in the basal cell membranes of primary tumour and spontaneously transformed cancer cells, respectively. Immunofluorescence labellings showed marked differences in their morphology, as podosomes organized a ring structure with HD1/plectin, αII-spectrin, talin, focal adhesion kinase and pacsin 2 around the core filled with actin, cortactin, vinculin and filamin A. Invadopodia had no division between ring and core and failed to organize the ring proteins, but instead assembled tail-like, narrow actin cables that showed a talin-tensin switch. Time-lapse live-cell imaging indicated that both podosomes and invadopodia were long-lived entities, but the tails of invadopodia vigorously propelled in the cytoplasm and were occasionally released from the cell membrane. Invadopodia could also be externalized outside the cytoplasm, where they still retained the ability to degrade matrix. In 3D confocal imaging combined with in situ gelatin zymography, the podosomes of primary tumour cells were large, cylindrical structures that increased in time, whereas the invadopodia in EMT-driven cells were smaller, but more numerous and degraded the underlying matrix in significantly larger amounts. Fluorescence recovery after photobleaching revealed that the substructures of podosomes were replenished more rapidly with new molecules than those of invadopodia. Overall, our results indicate that EMT has a major effect on the transcription and synthesis of both intra- and extracellular proteins, including laminins and their receptors, and on the structure and dynamics of oral squamous carcinoma cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ornithine decarboxylase (ODC) regulates the synthesis of polyamines which are involved in many cellular functions e.g. proliferation and differentiation. Due to its critical role, ODC is a tightly regulated enzyme by antizymes and antizyme inhibitors. If the regulation fails, the activity of ODC increases and may lead to malignant transformation of a cell. Increased ODC activity is found in many common cancers, including colon, prostate, and breast cancer. In a transformed cell, dynamics of the actin cytoskeleton is disturbed. A small G-protein, RhoA regulates organization of the cytoskeleton, and its overactivity increases malignant potential of the cell. The present results indicate that covalent attachment of polyamines by transglutaminase is a physiological means of regulating the activity of RhoA. The translocation of RhoA to the plasma membrane, where it exerts its activity is dependent on the presence of catalytically active ODC. As the overactivity of ODC and RhoA are implicated in cell transformation, the results provide a mechanistic explanation of the interrelationship between the polyamine metabolism and the reorganization of the actin cytoskeleton occurring in cancer cells. ODC and polyamines have also an important role in the function of central nervous system. They participate in the regulation of brain morphogenesis in embryos. In adult nervous tissue, polyamines regulate K+ and glutamate channels. K+ inward rectifying channels control membrane potentials and NMDA-type glutamate receptors (NMDAR) regulate synaptic plasticity. High ODC activity and polyamine levels are considered important in the development of ischemic brain damage and they are implicated in the pathogenesis of Alzheimer s disease (AD). A homolog of ODC was cloned from a human brain cDNA library, and several alternatively spliced variants were detected in human brain and testis. The novel protein was nevertheless devoid of ODC catalytic activity. It was subsequently found to be a novel inductor of ODC activity and polyamine synthesis, called antizyme inhibitor 2 (AZIN2). The accumulation of AZIN2 in vesicle-like formations along the axons and beneath the plasma membrane of neurons as well as in steroid hormone producing Leydig cells and luteal cells of the gonads implies that AZIN2 plays a role in secretion and vesicle trafficking. An accumulation of AZIN2 was detected also in specimens of AD brains. This increased expression of AZIN2 was specific for AD and was not found in brains with other neurodegenerative diseases including CADASIL or dementia with Lewy bodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palladin is a novel actin microfilament associated protein, which together with myotilin and myopalladin forms a novel cytoskeletal IgC2 domain protein family. Whereas the expression of myotilin and myopalladin is limited mainly to striated muscle, palladin is widely expressed in both epithelial and mesenchymal tissues, including heart and the nervous system. Palladin has a complex genetic structure and it is expressed as several different sized and structured splice variants, which also display differences in their expression pattern and interactions. In muscle cells, all the family members localize to the sarcomeric Z-disc, and in non-muscle cells palladin also localizes to the stress-fiber-dense regions, lamellipodia, podosomes and focal adhesions. A common feature of this protein family is the binding to α-actinin, but other interactions are mostly unique to each member. Palladin has been shown to interact with several proteins, including VASP, profilin, Eps8, LASP-1 and LPP. Its domain structure, lack of enzymatic activity and multiple interactions define it as a molecular scaffolding protein, which links together proteins with different functional modalities into large complexes. Palladin has an important role in cytoskeletal regulation, particularly in stress fiber formation and stabilization. This assumption is supported by several experimental results. First, over-expression of palladin in non-muscle cells results in rapid reorganization of the actin cytoskeleton and formation of thick actin bundles. Second, the knock-down of palladin with anti-sense and siRNA techniques or knock-out by genetic methods leads to defective stress fiber formation. Furthermore, palladin is usually up-regulated in situations requiring a highly organized cytoskeleton, such as differentiation of dendritic cells, trophoblasts and myofibroblasts, and activation of astrocytes during glial scar formation. The protein family members have also direct disease linkages; myotilin missense mutations are the cause of LGMD1A and myofibrillar myopathy. Palladin mutations and polymorphisms, on the other hand, have been linked to hereditary pancreatic cancer and myocardial infarction, respectively. In this study we set out to characterize human palladin. We identified several palladin isoforms, studied their tissue distribution and sub-cellular localization. Four novel interaction partners were identified; ezrin, ArgBP2, SPIN90 and Src-kinase.The previously identified interaction between palladin and α-actinin was also characterized in detail. All the identified new binding partners are actin cytoskeleton associated proteins; ezrin links the plasma membrane to the cytoskeleton, ArgBP2 and SPIN90 localize, among other structures, to the lamellipodia and in cardiomyocytes to the Z-disc. Src is a transforming tyrosine kinase, which besides its role in oncogenesis has also important cytoskeletal associations. We also studied palladin in myofibroblasts, which are specialized cells involved in diverse physiological and pathological processes, such as wound healing and tissue fibrosis. We demonstrated that palladin is up-regulated during the differentiation of myofibroblasts in an isoform specific manner, and that this up-regulation is induced by TGF-β via activation of both the SMAD and MAPK signalling cascades. In summary, the results presented here describe the initial characterization of human palladin and offer a basis for further studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurofibromatosis 2 (NF2) is a dominantly inherited disorder, which predisposes to multiple tumours of the nervous system, typically schwannomas and meningiomas. Biallelic inactivation of the NF2 gene occurs both in sporadic and NF2-related schwannomas and in most meningiomas. The NF2 gene product merlin (or schwannomin) is structurally related to the ERM proteins, ezrin, radixin and moesin, which act as molecular linkers between the actin cytoskeleton and the plasma membrane. Merlin is a tumor suppressor that participates in cell cycle regulation. Merlin s phosphorylation status appears to be associated with its tumour suppressor activity, i.e. non-phosphorylated merlin functions as a tumour suppressor, whereas protein phosphorylation results in loss of functional activity. This thesis study was initiated to investigate merlin s role as a tumor suppressor and growth inhibitor. These studies show, that like many other tumor suppressors, also merlin is targeted to the nucleus at some stages of the cell cycle. Merlin s nuclear localization is regulated by cell cycle phase, contact inhibition and adhesion. In addition, a potential nuclear binding partner for merlin was identified, Human Enhancer of Invasion 10 (HEI10), a cyclin B interacting protein. Many tumor suppressors interact with microtubules and this thesis work shows that also merlin colocalizes with microtubules in mitotic structures. Merlin binds microtubules directly, and increases their polymerization in vitro and in vivo. In addition, primary mouse Schwann cells lacking merlin displays disturbed microtubule cytoskeleton. Fourth part of this thesis work began from the notion that PKA phosphorylates an unidentified site from the merlin N-terminus. Our studies show that serine 10 is a target for PKA and modulation of this residue regulates cytoskeletal organization, lamellipodia formation and cell migration. In summary, this thesis work shows that merlin s role is much more versatile than previously thought. It has a yet unidentified role in the nucleus and it participates in the regulation of both microtubules and the actin cytoskeleton. These studies have led to a better understanding of this enigmatic tumor suppressor, which eventually will aid in the design of specific drugs for the NF2 disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rab8 and its interacting proteins as regulators of cell polarization During the development of a multi-cellular organism, progenitor cells have to divide and migrate appropriately as well as organize their differentiation with one another, in order to produce a viable embryo. To divide, differentiate and migrate cells have to undergo polarization, a process where internal and external components such as actin, microtubules and adhesion receptors are reorganized to produce a cell that is asymmetric, with functionally different surfaces. Also in the adult organism there is a continuous need for these processes, as cells need to migrate in response to tissue damage and to fight infection. Improper regulation of cell proliferation and migration can conversely lead to disease such as cancer. GTP-binding proteins function as molecular switches by cycling between a GTP-bound (active) conformation and a GDP-bound (inactive) conformation. The Ras super-family of small GTPases are found in all eukaryotic cells. They can be functionally divided into five subfamilies. The Ras family members mainly regulate gene expression, controlling cell proliferation and differentiation. Ras was in fact the first human oncogene to be characterized, and as much as 30% of all human tumors may be directly or indirectly caused by mutations of Ras molecules The Rho family members mainly regulate cytoskeletal reorganization. Arf proteins are known to regulate vesicle budding and Rab proteins regulate vesicular transport. Ran regulates nuclear transport as well as microtubule organization during mitosis. The focus of the thesis of Katarina Hattula, is on Rab8, a small GTPase of the Rab family. Activated Rab8 has previously been shown to induce the formation of new surface extensions, reorganizing both actin and microtubules, and to have a role in directed membrane transport to cell surfaces. However, the exact membrane route it regulates has remained elusive. In the thesis three novel interactors of Rab8 are presented. Rabin8 is a Rab8-specific GEF that localizes to vesicles where it presumably recruits and activates its target Rab8. Its expression in cells leads to remodelling of actin and the formation of polarized cell surface domains. Optineurin, known to be associated with a leading cause of blindness in humans (open-angle glaucoma), is shown to interact specifically with GTP-bound Rab8. Rab8 binds to an amino-terminal region and interestingly, the Huntingtin protein binds a carboxy-terminal region of optineurin. (Aberrant Huntingtin protein is known to be the cause Huntington s disease in humans.) Co-expression of Huntingtin and optineurin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures. Furthermore, optineurin promoted cell polarization in a similar way to Rab8. A third novel interactor of Rab8 presented in this thesis is JFC1, a member of the synaptogamin-like protein (Slp) family. JFC1 interacts with Rab8 specifically in its GTP-bound form, co-localizes with endogenous Rab8 on tubular and vesicular structures, and is probably involved in controlling Rab8 membrane dynamics. Rab8 is in this thesis work clearly shown to have a strong effect on cell shape. Blocking Rab8 activity by expression of Rab8 RNAi, or by expressing the dominant negative Rab8 (T22N) mutant leads to loss of cell polarity. Conversely, cells expressing the constitutively active Rab8 (Q67L) mutant exhibit a strongly polarized phenotype. Experiments in live cells show that Rab8 is associated with macropinosomes generated at ruffling areas of the membrane. These macropinosomes fuse with or transform into tubules that move toward the cell centre, from where they are recycled back to the leading edge to participate in protrusion formation. The biogenesis of these tubules is shown to be dependent on both actin and microtubule dynamics. The Rab8-specific membrane route studied contained several markers known to be internalized and recycled (1 integrin, transferrin, transferrin receptor, cholera toxin B subunit (CTxB), and major histocompatibility complex class I protein (MHCI)). Co-expression studies revealed that Rab8 localization overlaps with that of Rab11 and Arf6. Rab8 is furthermore clearly functionally linked to Arf6. The data presented in this thesis strongly suggests a role for Rab8 as a regulator for a recycling compartment, which is involved in providing structural and regulatory components to the leading edge to participate in protrusion formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal muscle cells are highly specialised in order to accomplish their function. During development, the fusion of hundreds of immature myoblasts creates large syncytial myofibres with a highly ordered cytoplasm filled with packed myofibrils. The assembly and organisation of contractile myofibrils must be tightly controlled. Indeed, the number of proteins involved in sarcomere building is impressive, and the role of many of them has only recently begun to be elucidated. Myotilin was originally identified as a high affinity a-actinin binding protein in yeast twohybrid screen. It was then found to interact also with filamin C, actin, ZASP and FATZ-1. Human myotilin is mainly expressed in striated muscle and induces efficient actin bundling in vitro and in cells. Moreover, mutations in myotilin cause different forms of muscle disease, now collectively known as myotilinopathies. In this thesis, consisting of three publications, the work on the mouse orthologue is presented. First, the cloning and molecular characterisation of the mouse myotilin gene showed that human and mouse myotilin share high sequence homology and a similar expression pattern and gene regulation. Functional analysis of the mouse promoter revealed the myogenic factor-binding elements that are required for myotilin gene transcription. Secondly, expression of myotilin was studied during mouse embryogenesis. Surprisingly, myotilin was expressed in a wide array of tissues at some stages of development; its expression pattern became more restricted at perinatal stages and in adult life. Immunostaining of human embryos confirmed broader myotilin expression compared to the sarcomeric marker titin. Finally, in the third article, targeted deletion of myotilin gene in mice revealed that it is not essential for muscle development and function. These data altogether indicate that the mouse can be used as a model for human myotilinopathy and that loss of myotilin does not alter significantly muscle structure and function. Therefore, disease-associated mutant myotilin may act as a dominant myopathic factor.