44 resultados para Kidney function markers
Resumo:
Acute heart failure (AHF) is a complex syndrome associated with exceptionally high mortality. Still, characteristics and prognostic factors of contemporary AHF patients have been inadequately studied. Kidney function has emerged as a very powerful prognostic risk factor in cardiovascular disease. This is believed to be the consequence of an interaction between the heart and kidneys, also termed the cardiorenal syndrome, the mechanisms of which are not fully understood. Renal insufficiency is common in heart failure and of particular interest for predicting outcome in AHF. Cystatin C (CysC) is a marker of glomerular filtration rate with properties making it a prospective alternative to the currently used measure creatinine for assessment of renal function. The aim of this thesis is to characterize a representative cohort of patients hospitalized for AHF and to identify risk factors for poor outcome in AHF. In particular, the role of CysC as a marker of renal function is evaluated, including examination of the value of CysC as a predictor of mortality in AHF. The FINN-AKVA (Finnish Acute Heart Failure) study is a national prospective multicenter study conducted to investigate the clinical presentation, aetiology and treatment of, as well as concomitant diseases and outcome in, AHF. Patients hospitalized for AHF were enrolled in the FINN-AKVA study, and mortality was followed for 12 months. The mean age of patients with AHF is 75 years and they frequently have both cardiovascular and non-cardiovascular co-morbidities. The mortality after hospitalization for AHF is high, rising to 27% by 12 months. The present study shows that renal dysfunction is very common in AHF. CysC detects impaired renal function in forty percent of patients. Renal function, measured by CysC, is one of the strongest predictors of mortality independently of other prognostic risk markers, such as age, gender, co-morbidities and systolic blood pressure on admission. Moreover, in patients with normal creatinine values, elevated CysC is associated with a marked increase in mortality. Acute kidney injury, defined as an increase in CysC within 48 hours of hospital admission, occurs in a significant proportion of patients and is associated with increased short- and mid-term mortality. The results suggest that CysC can be used for risk stratification in AHF. Markers of inflammation are elevated both in heart failure and in chronic kidney disease, and inflammation is one of the mechanisms thought to mediate heart-kidney interactions in the cardiorenal syndrome. Inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) correlate very differently to markers of cardiac stress and renal function. In particular, TNF-α showed a robust correlation to CysC, but was not associated with levels of NT-proBNP, a marker of hemodynamic cardiac stress. Compared to CysC, the inflammatory markers were not strongly related to mortality in AHF. In conclusion, patients with AHF are elderly with multiple co-morbidities, and renal dysfunction is very common. CysC demonstrates good diagnostic properties both in identifying impaired renal function and acute kidney injury in patients with AHF. CysC, as a measure of renal function, is also a powerful prognostic marker in AHF. CysC shows promise as a marker for assessment of kidney function and risk stratification in patients hospitalized for AHF.
Resumo:
Background. Kidney transplantation (KTX) is considered to be the best treatment of terminal uremia. Despite improvements in short-term graft survival, a considerable number of kidney allografts are lost due to the premature death of patients with a functional kidney and to chronic allograft nephropathy (CAN). Aim. To investigate the risk factors involved in the progression of CAN and to analyze diagnostic methods for this entity. Materials and methods. Altogether, 153 implant and 364 protocol biopsies obtained between June 1996 and April 2008 were analyzed. The biopsies were classified according to Banff ’97 and chronic allograft damage index (CADI). Immunohistochemistry for TGF-β1 was performed in 49 biopsies. Kidney function was evaluated by creatinine and/or cystatin C measurement and by various estimates of glomerular filtration rate (GFR). Demographic data of the donors and recipients were recorded after 2 years’ follow-up. Results. Most of the 3-month biopsies (73%) were nearly normal. The mean CADI score in the 6-month biopsies decreased significantly after 2001. Diastolic hypertension correlated with ΔCADI. Serum creatinine concentration at hospital discharge and glomerulosclerosis were risk factors for ΔCADI. High total and LDL cholesterol, low HDL and hypertension correlated with chronic histological changes. The mean age of the donors increased from 41 -52 years. Older donors were more often women who had died from an underlying disease. The prevalence of delayed graft function increased over the years, while acute rejections (AR) decreased significantly over the years. Sub-clinical AR was observed in 4% and it did not affect long-term allograft function or CADI. Recipients´ drug treatment was modified along the Studies, being mycophenolate mophetil, tacrolimus, statins and blockers of the renine-angiotensin-system more frequently prescribed after 2001. Patients with a higher ΔCADI had lower GFR during follow-up. CADI over 2 was best predicted by creatinine, although with modest sensitivity and specificity. Neither cystatin C nor other estimates of GFR were superior to creatinine for CADI prediction. Cyclosporine A toxicity was seldom seen. Low cyclosporin A concentration after 2 h correlated with TGF- β1 expression in interstitial inflammatory cells, and this predicted worse graft function. Conclusions. The progression of CAN has been affected by two major factors: the donors’ characteristics and the recipients’ hypertension. The increased prevalence of DGF might be a consequence of the acceptance of older donors who had died from an underlying disease. Implant biopsies proved to be of prognostic value, and they are essential for comparison with subsequent biopsies. The progression of histological damage was associated with hypertension and dyslipidemia. The augmented expression of TGF-β1 in inflammatory cells is unclear, but it may be related to low immunosuppression. Serum creatinine is the most suitable tool for monitoring kidney allograft function on every-day basis. However, protocol biopsies at 6 and 12 months predicted late kidney allograft dysfunction and affected the clinical management of the patients. Protocol biopsies are thus a suitable surrogate to be used in clinical trials and for monitoring kidney allografts.
Resumo:
The permanent mammalian kidney (metanephros) develops as a result of complex reciprocal tissue interactions between a ureteric epithelium and the renal mesenchyme. The overall goal of the research in this thesis was to gain data that will eventually help in elucidating the formation of congenital renal malformations. The experiments in my thesis aimed to reveal the mechanisms by which Notch, Wnt and GDNF/Ret signalling pathways regulate the development of functional kidney. The function of Notch pathway was studied by a transgenic mouse model, where it was shown that overactivation of Notch signalling disturbs kidney development and alters the expression of Gdnf and Ret/GFRa1. This indicates that Notch signalling interplays with GDNF/Ret in the regulation of the primary ureteric budding and its subsequent branching. The data also suggested that strict spatio-temporal regulation of these two pathways is required for determination of ureteric tip-identity, which appeared to be crucial for the branch formation. The function of Wnt signalling in the ureteric morphogenesis was studied by in vivo and in vitro methods to show that a canonical pathway is required for ureteric branching. Stabilisation and deletion of the canonical pathway mediator, b-catenin specifically in the ureteric epithelium result in renal aplasia/hypodysplasia. These defects originate from severe blockage of ureteric branching due to the disrupted Ret signalling. Consequently, ureteric tip specific markers are lost and ureteric stalk identity is expanded throughout the whole epithelium. Thus, the data demonstrates that the Wnt/b-catenin pathway plays an essential role in the patterning and branching of the ureteric epithelium. A novel in vitro method was generated and utilised in nephron induction studies to reveal the mechanisms through which nephrogenesis is induced. Transient GSK3 inhibition results in stabilisation of b-catenin in the isolated renal mesenchyme, which efficiently triggers nephron formation. Also genetic stabilisation of b-catenin specifically in the mesenchyme results in spontaneous nephrogenesis. The results show that activation of the canonical Wnt pathway is sufficient to initiate nephrogenesis, and suggest that this pathway mediates the nephron induction in murine kidney mesenchymes. Taken together, this thesis demonstrates Notch and Wnt signalling pathways as novel regulators of ureteric branching morphogenesis, and that activation of the canonical Wnt pathway is sufficient for nephron induction. The studies also indicate that the Notch and Wnt pathways cross-talk with GDNF/Ret signalling in the patterning of ureteric epithelium.
Resumo:
Nephrin is a transmembrane protein belonging to the immunoglobulin superfamily and is expressed primarily in the podocytes, which are highly differentiated epithelial cells needed for primary urine formation in the kidney. Mutations leading to nephrin loss abrogate podocyte morphology, and result in massive protein loss into urine and consequent early death in humans carrying specific mutations in this gene. The disease phenotype is closely replicated in respective mouse models. The purpose of this thesis was to generate novel inducible mouse-lines, which allow targeted gene deletion in a time and tissue-specific manner. A proof of principle model for succesful gene therapy for this disease was generated, which allowed podocyte specific transgene replacement to rescue gene deficient mice from perinatal lethality. Furthermore, the phenotypic consequences of nephrin restoration in the kidney and nephrin deficiency in the testis, brain and pancreas in rescued mice were investigated. A novel podocyte-specific construct was achieved by using standard cloning techniques to provide an inducible tool for in vitro and in vivo gene targeting. Using modified constructs and microinjection procedures two novel transgenic mouse-lines were generated. First, a mouse-line with doxycycline inducible expression of Cre recombinase that allows podocyte-specific gene deletion was generated. Second, a mouse-line with doxycycline inducible expression of rat nephrin, which allows podocyte-specific nephrin over-expression was made. Furthermore, it was possible to rescue nephrin deficient mice from perinatal lethality by cross-breeding them with a mouse-line with inducible rat nephrin expression that restored the missing endogenous nephrin only in the kidney after doxycycline treatment. The rescued mice were smaller, infertile, showed genital malformations and developed distinct histological abnormalities in the kidney with an altered molecular composition of the podocytes. Histological changes were also found in the testis, cerebellum and pancreas. The expression of another molecule with limited tissue expression, densin, was localized to the plasma membranes of Sertoli cells in the testis by immunofluorescence staining. Densin may be an essential adherens junction protein between Sertoli cells and developing germ cells and these junctions share similar protein assembly with kidney podocytes. This single, binary conditional construct serves as a cost- and time-efficient tool to increase the understanding of podocyte-specific key proteins in health and disease. The results verified a tightly controlled inducible podocyte-specific transgene expression in vitro and in vivo as expected. These novel mouse-lines with doxycycline inducible Cre recombinase and with rat nephrin expression will be useful for conditional gene targeting of essential podocyte proteins and to study in detail their functions in the adult mice. This is important for future diagnostic and pharmacologic development platforms.
Resumo:
Kidney transplantation (Tx) is the treatment of choice for end stage renal disease. Immunosuppressive medications are given to prevent an immunological rejection of the transplant. However, immunosuppressive drugs increase e.g. the risk of infection, cancer or nephrotoxicity. A major genetic contributors to immunological acceptance of the graft are human leukocyte antigen (HLA) genes. Also other non-HLA gene polymorphisms may predict the future risk of complications before Tx, possibly enabling individualised immunotherapy. Graft function after Tx is monitored using non-specific clinical symptoms and laboratory markers. The definitive diagnosis of graft rejection however relies on a biopsy of the graft. In the acute rejection (AR) diagnostics there is a need for an alternative to biopsy that would be an easily repeatable and simple method for regular use. Frequent surveillance of acute or subclinical rejection (SCR) may improve long-term function. In this thesis, associations between cytokine and thrombosis associated candidate genes and the outcome of kidney Tx were studied. Cytotoxic and co-stimulatory T lymphocyte molecule gene expression biomarkers for the diagnosis of the AR and the SCR were also investigated. We found that polymorphisms in the cytokine genes tumor necrosis factor and interleukin 10 (IL10) of the recipients were associated with AR. In addition, certain IL10 gene polymorphisms of the donors were associated with the incidence of cytomegalovirus infection and occurrence of later infection in a subpopulation of recipients. Further, polymorphisms in genes related to the risk of thrombosis and those of certain cytokines were not associated with the occurrence of thrombosis, infarction, AR or graft survival. In the study of biomarkers for AR, whole blood samples were prospectively collected from adult kidney Tx patients. With real-time quantitative PCR (RT-QPCR) gene expression quantities of CD154 and ICOS differentiated the patients with AR from those without, but not from the patients with other causes of graft dysfunction. Biomarkers for SCR were studied in paediatric kidney Tx patients. We used RT-QPCR to quantify the gene expression of immunological candidate genes in a low-density array format. In addition, we used RT-QPCR to validate the results of the microarray analysis. No gene marker differentiated patients with SCR from those without SCR. This research demonstrates the lack of robust markers among polymorphisms or biomarkers in investigated genes that could be included in routine analysis in a clinical laboratory. In genetic studies, kidney Tx can be regarded as a complex trait, i.e. several environmental and genetic factors may determine its outcome. A number of currently unknown genetic factors probably influence the results of Tx.
Resumo:
The kidney filtration barrier consists of fenestrated endothelial cell layer, glomerular basement membrane and slit diaphragm (SD), the specialized junction between glomerular viscelar epithelial cells (podocytes). Podocyte injury is associated with the development of proteinuria, and if not reversed the injury will lead to permanent deterioration of the glomerular filter. The early events are characterized by disruption of the integrity of the SD, but the molecular pathways involved are not fully understood. Congenital nephrotic syndrome of the Finnish type (CNF) is caused by mutations in NPHS1, the gene encoding the SD protein nephrin. Lack of nephrin results in loss of the SD and massive proteinuria beginning before birth. Furthermore, nephrin expression is decreased in acquired human kidney diseases including diabetic nephropathy. This highlights the importance of nephrin and consequently SD in regulating the kidney filtration function. However, the precise molecular mechanism of how nephrin is involved in the formation of the SD is unknown. This thesis work aimed at clarifying the role of nephrin and its interaction partners in the formation of the SD. The purpose was to identify novel proteins that associate with nephrin in order to define the essential molecular complex required for the establishment of the SD. The aim was also to decipher the role of novel nephrin interacting proteins in podocytes. Nephrin binds to nephrin-like proteins Neph1 and Neph2, and to adherens junction protein P-cadherin. These interactions have been suggested to play a role in the formation of the SD. In this thesis work, we identified densin as a novel interaction partner for nephrin. Densin was localized to the SD and it was shown to bind to adherens junction protein beta-catenin. Furthermore, densin was shown to behave in a similar fashion as adherens junction proteins in cell-cell contacts. These results indicate that densin may play a role in cell adhesion and, therefore, may contribute to the formation of the SD together with nephrin and adherens junction proteins. Nephrin was also shown to bind to Neph3, which has been previously localized to the SD. Neph3 and Neph1 were shown to induce cell adhesion alone, whereas nephrin needed to trans-interact with Neph1 or Neph3 from the opposite cell surface in order to make cell-cell contacts. This was associated with the decreased tyrosine phosphorylation of nephrin. These data extend the current knowledge of the molecular composition of the nephrin protein complex at the SD and also provide novel insights of how the SD may be formed. This thesis work also showed that densin was up-regulated in the podocytes of CNF patients. Neph3 was up-regulated in nephrin deficient mouse kidneys, which share similar podocyte alterations and lack of the SD as observed in CNF patients podocytes. These data suggest that densin and Neph3 may have a role in the formation of morphological alterations in podocytes detected in CNF patients. Furthermore, this thesis work showed that deletion of beta-catenin specifically from adult mouse podocytes protected the mice from the development of adriamycin-induced podocyte injury and proteinuria compared to wild-type mice. These results show that beta-catenin play a role in the adriamycin induced podocyte injury. Podocyte injury is a hallmark in many kidney diseases and the changes observed in the podocytes of CNF patient share characteristics with injured podocytes observed in chronic kidney diseases. Therefore, the results obtained in this thesis work suggest that densin, Neph3 and beta-catenin participate in the molecular pathways which result in morphological alterations commonly detected in injured podocytes in kidney diseases.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) and its family members neurturin (NRTN), artemin (ARTN) and persephin (PSPN) are growth factors, which are involved in the development, differentiation and maintenance of many neuron types. In addition, they function outside of the nervous system, e.g. in the development of kidney, testis and liver. GDNF family ligand (GFL) signalling happens through a tetrameric receptor complex, which includes two glycosylphosphatidylinositol (GPI)-anchored GDNF family receptor (GFRα) molecules and two RET (rearranged during transfection) receptor tyrosine kinases. Each of the ligands binds preferentially one of the four GFRα receptors: GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The signal is then delivered by RET, which cannot bind the GFLs on its own, but can bind the GFL-GFRα complex. Under normal cellular conditions, RET is only phosphorylated on the cell surface after ligand binding. At least the GDNF-GFRα1 complex is believed to recruit RET to lipid rafts, where downstream signalling occurs. In general, GFRαs consist of three cysteine-rich domains, but all GFRα4s except for chicken GFRα4 lack domain 1 (D1). We characterised the biochemical and cell biological properties of mouse PSPN receptor GFRα4 and showed that it has a significantly weaker capacity than GFRα1 to recruit RET to the lipid rafts. In spite of that, it can phosphorylate RET in the presence of PSPN and contribute to neuronal differentiation and survival. Therefore, the recruitment of RET to the lipid rafts does not seem to be crucial for the biological activity of all GFRα receptors. Secondly, we demonstrated that GFRα1 D1 stabilises the GDNF-GFRα1 complex and thus affects the phosphorylation of RET and contributes to the biological activity. This may be important in physiological conditions, where the concentration of the ligand or the soluble GFRα1 receptor is low. Our results also suggest a role for D1 in heparin binding and, consequently, in the biodistribution of released GFRα1 or in the formation of the GFL-GFRα-RET complex. We also presented the crystallographic structure of GDNF in the complex with GFRα1 domains 2 and 3. The structure differs from the previously published ARTN-GFRα3 structure in three significant ways. The biochemical data verify the structure and reveal residues participating in the interactions between GFRα1 and GDNF, and preliminarily also between GFRα1 and RET and heparin. Finally, we showed that, the precursor of the oncogenic MEN 2B (multiple endocrine neoplasia type 2) form of RET gets phosphorylated already during its synthesis in the endoplasmic reticulum (ER). We also demonstrated that it associates with Src homology 2 domain-containing protein (SHC) and growth factor receptor-bound protein (GRB2) in the ER, and has the capacity to activate several downstream signalling molecules.
Resumo:
The growth factors of the glial cell line-derived neurotrophic factor (GDNF) family consisting of GDNF, neurturin (NRTN), artemin (ARTN) and persephin (PSPN), are involved in the development, differentiation and maintenance of many types of neurons. They also have important functions outside the nervous system in the development of kidney, testis and thyroid gland. Each of these GFLs preferentially binds to one of the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptors α (GFRα). GDNF binds to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN to GFRα4. The GFLs in the complex with their cognate GFRα receptors all bind to and signal through the receptor tyrosine kinase RET. Alternative splicing of the mouse GFRα4 gene yields three splice isoforms. These had been described as putative GPI-anchored, transmembrane and soluble forms. My goal was to characterise the function of the different forms of mouse GFRα4. I firstly found that the putative GPI-anchored GFRα4 (GFRα4-GPI) is glycosylated, membrane-bound, GPI-anchored and interacts with PSPN and RET. We also showed that mouse GFRα4-GPI mediates PSPN-induced phosphorylation of RET, promotes PSPN-dependent neuronal differentiation of the rat pheochromocytoma cell line PC6-3 and PSPN-dependent survival of cerebellar granule neurons (CGN). However, although this receptor can mediate PSPN-signalling and activate RET, GFRα4-GPI does not recruit RET into lipid rafts. The recruitment of RET into lipid rafts has previously been thought to be a crucial event for GDNF- and GFL-mediated signalling via RET. I secondly demonstrated that the putative transmembrane GFRα4 (GFRα4-TM) is indeed a real transmembrane GFRα4 protein. Although it has a weak binding capacity for PSPN, it can not mediate PSPN-dependent phosphorylation of RET, neuronal differentiation or survival. These data show that GFRα4-TM is inactive as a receptor for PSPN. Surprisingly, GFRα4-TM can negatively regulate PSPN-mediated signalling via GFRα4-GPI. GFRα4-TM interacts with GFRα4-GPI and blocks PSPN-induced phosphorylation of RET, neuronal differentiation as well as survival. Taken together, our data show that GFRα4-TM may act as a dominant negative inhibitor of PSPN-mediated signaling. The most exciting part of my work was the finding that the putative soluble GFRα4 (GFRα4-sol) can form homodimers and function as an agonist of the RET receptor. In the absence of PSPN, GFRα4-sol can promote the phosphorylation of RET, trigger the activation of the PI-3K/AKT pathway, induce neuronal differentiation and support the survival of CGN. Our findings are in line with a recent publication showing the GFRα4-sol might contribute to the inherited cancer syndrome multiple endocrine neoplasia type 2. Our data provide an explanation to how GFRα4-sol may cause or modify the disease. Mammalian GFRα4 receptors all lack the first Cys-rich domain which is present in other GFRα receptors. In the final part of my work I have studied the function of this particular domain. I created a truncated GFRα1 construct lacking the first Cys-rich domain. Using binding assays in both cellular and cell-free systems, phosphorylation assays with RET, as well as neurite outgrowth assays, we found that the first Cys-rich domain contributes to an optimal function of GFRα1, by stabilizing the interaction between GDNF and GFRα1.
Resumo:
The aim of the study was to evaluate gastrointestinal (GI) complications after kidney transplantation in the Finnish population. The adult patients included underwent kidney transplantation at Helsinki University Central Hospital in 1990-2000. Data on GI complications were collected from the Finnish Kidney Transplantation Registry, patient records and from questionnaires sent to patients. Helicobacter pylori IgG and IgA antibodies were measured from 500 patients before kidney transplantation and after a median 6.8-year follow up. Oesophagogastroduodenoscopy with biopsies was performed on 46 kidney transplantation patients suffering from gastroduodenal symptoms and 43 dyspeptic controls for studies of gastroduodenal cytomegalovirus (CMV) infection. Gallbladder ultrasound was performed on 304 patients after a median of 7.4 years post transplantation. Data from these 304 patients were also collected on serum lipids, body mass index and the use of statin medication. Severe GI complications occurred in 147 (10%) of 1515 kidney transplantations, 6% of them fatal after a median of 0.93 years. 51% of the complications occurred during the first post transplantation year, with highest incidence in gastroduodenal ulcers and complications of the colon. Patients with GI complications were older and had more delayed graft function and patients with polycystic kidney disease had more GI complications than the other patients. H.pylori seropositivity rate was 31% and this had no influence on graft or patient survival. 29% of the H.pylori seropositive patients seroreverted without eradication therapy. 74% of kidney transplantation patients had CMV specific matrix protein pp65 or delayed early protein p52 positive findings in the gastroduodenal mucosa, and 53% of the pp65 or p52 positive patients had gastroduodenal erosions without H.pylori findings. After the transplantation 165 (11%) patients developed gallstones. A biliary complication including 1 fatal cholecystitis developed in 15% of the patients with gallstones. 13 (0.9%) patients had pancreatitis. Colon perforations, 31% of them fatal, occurred in 16 (1%) patients. 13 (0.9%) developed a GI malignancy during the follow up. 2 H.pylori seropositive patients developed gastroduodenal malignancies during the follow up. In conclusion, severe GI complications usually occur early after kidney transplantation. Colon perforations are especially serious in kidney transplantation patients and colon diverticulosis and gallstones should be screened and treated before transplantation. When found, H.pylori infection should also be treated in these patients.
Resumo:
Background and aims. Diabetic dyslipidemia is a highly atherogenic triad of increased triglycerides, decreased HDL cholesterol, and small dense LDL. Fibrates have a beneficial effect on diabetic dyslipidemia, and they have reduced cardiovascular events in randomized trials. Fenofibrate has reduced albuminuria and markers of low-grade inflammation and endothelial dysfunction. The present studies were undertaken to characterize the alterations of VLDL and LDL subclasses and to investigate the binding of LDL to arterial wall in type 2 diabetes. Further purpose was to elucidate the effects of fenofibrate on several lipoprotein subclasses, augmentation index (AIx), carotid intima-media thickness (IMT), and renal function. Subjects. 239 type 2 diabetic subjects were recruited among participants of the FIELD (Fenofibrate Intervention and Event Lowering in Diabetes) study at the Helsinki centre. The patients were randomized to fenofibrate (200mg/d) or placebo for 5 years. Additionally, a healthy control group (N = 93) was recruited. Results. VLDL1 triglycerides increased in similar proportion to total triglycerides in type 2 diabetic patients and control subjects. Despite the increase in total apoCIII levels, VLDL apoCIII was decreased in diabetic patients. Enrichment of LDL with apoCIII induced a small increase in binding of LDL to arterial wall proteoglycan. Intrinsic characteristics of diabetic LDL, rather than levels of apoCIII, were responsible for increased proteoglycan binding of diabetic LDL with high apoCIII. Fenofibrate reduced triglycerides, increased LDL size, and shifted HDL subclasses towards smaller particles with no change in levels of HDL cholesterol. High levels of homocysteine were associated with lower increase of HDL cholesterol and apoA-I during fenofibrate treatment. Long-term fenofibrate treatment did not improve IMT, AIx, inflammation, or endothelial function. Fenofibrate decreased creatinine clearance and estimated glomerular filtration rate. No effect on albuminuria was seen with fenofibrate. Instead, Cystatin C was increased during fenofibrate treatment. Conclusions. 1) Elevation of VLDL 1 triglycerides was the major determinant of plasma triglyceride concentration in control subjects and type 2 diabetic patients. 2) LDL with high apoCIII showed multiple atherogenic properties, that were only partially mediated by apoCIII per se in type 2 diabetes 3) Fenofibrate demonstrated no effect on surrogate markers of atherosclerosis. 4) Fenofibrate had no effect on albuminuria and the observed decrease in markers of renal function could complicate the clinical surveillance of the patients. 5) Fenofibrate can be used to treat severe hypertriglyceridemia or in combination therapy with statins, but not to increase HDL levels.
Resumo:
Tibolone, a synthetic steroid, is effective in the treatment of postmenopausal symptoms. Its cardiovascular safety profile has been questioned, because tibolone reduces the levels of high-density lipoprotein (HDL) cholesterol. Soy-derived isoflavones may offer health benefits, particularly as regards lipids and also other cardiovascular disease (CVD) risk factors. The soy-isoflavone metabolite equol is thought to be the key as regards soy-related beneficial effects. We studied the effects of soy supplementation on various CVD risk factors in postmenopausal monkeys and postmenopausal women using tibolone. In addition, the impact of equol production capability was studied. A total of 18 monkeys received casein/lactalbumin (C/L) (placebo), tibolone, soy (a woman s equivalent dose of 138 mg of isoflavones), or soy with tibolone in a randomized order for 14 weeks periods, and there was a 4-week washout (C/L) in between treatments. Postmenopausal women using tibolone (N=110) were screened by means of a one-week soy challenge to find 20 women with equol production capability (4-fold elevation from baseline equol level) and 20 control women, and treated in a randomized cross-over trial with a soy powder (52 g of soy protein containing 112 mg of isoflavones) or placebo for 8 weeks. Before and after the treatments lipids and lipoproteins were assessed in both monkeys and women. In addition, blood pressure, arterial stiffness, endothelial function, sex steroids, sex hormone-binding globulin (SHBG), and vascular inflammation markers were assessed. A 14% increase in plasma low-density lipoprotein (LDL) + very low-density lipoprotein (VLDL) cholesterol was observed in tibolone-treated monkeys vs. placebo. Soy treatment resulted in a 18% decrease in LDL+VLDL cholesterol, and concomitant supplementation with tibolone did not negate the LDL+VLDL cholesterol-lowering effect of soy. A 30% increase in HDL cholesterol was observed in monkeys fed with soy, whereas HDL cholesterol levels were reduced (48%) after tibolone. Interestingly, Soy+Tibolone diet conserved HDL cholesterol levels. Tibolone alone increased the total cholesterol (TC):HDL cholesterol ratio, whereas it was reduced by Soy or Soy+Tibolone. In postmenopausal women using tibolone, reductions in the levels of total cholesterol and LDL cholesterol were seen after soy supplementation compared with placebo, but there was no effect on HDL cholesterol, blood pressure, arterial stiffness or endothelial function. Soy supplementation decreased the levels of estrone in equol producers, and those of testosterone in the entire study population. No changes were seen in the levels of androstenedione, dehydroepiandrosterone sulfate, or SHBG. The levels of vascular cell adhesion molecule-1 increased, and platelet-selectin decreased after soy treatment, whereas C-reactive protein and intercellular adhesion molecule-1 remained unchanged. At baseline and unrelated to soy treatment, equol producers had lower systolic, diastolic and mean arterial pressures, less arterial stiffness and better endothelial function than non-producers. To conclude, soy supplementation reversed the tibolone-induced fall in HDL cholesterol in postmenopausal monkeys, but this effect was not seen in women taking tibolone. Equol production capability was associated with beneficial cardiovascular changes and thus, this characteristic may offer cardiovascular benefits, at least in women using tibolone.
Resumo:
Transcription factors play a key role in tumor development, in which dysfunction of genes regulating tissue growth and differentiation is a central phenomenon. The GATA family of transcription factors consists of six members that bind to a consensus DNA sequence (A/T)GATA(A/G) in gene promoters and enhancers. The two GATA factors expressed in the adrenal cortex are GATA-4 and GATA-6. In both mice and humans, GATA-4 can be detected only during the fetal period, whereas GATA-6 expression is abundant both throughout development and in the adult. It is already established that GATA factors are important in both normal development and tumorigenesis of several endocrine organs, and expression of GATA-4 and GATA-6 is detected in adrenocortical tumors. The aim of this study was to elucidate the function of these factors in adrenocortical tumor growth. In embryonal development, the adrenocortical cells arise and differentiate from a common pool with gonadal steroidogenic cells, the urogenital ridge. As the adult adrenal cortex undergoes constant renewal, it is hypothesized that undifferentiated adrenocortical progenitor cells reside adjacent to the adrenal capsule and give rise to daughter cells that differentiate and migrate centripetally. A diverse array of hormones controls the differentiation, growth and survival of steroidogenic cells in the adrenal gland and the gonads. Factors such as luteinizing hormone and inhibins, traditionally associated with gonadal steroidogenic cells, can also influence the function of adrenocortical cells in physiological and pathophysiological states. Certain inbred strains of mice develop subcapsular adrenocortical tumors in response to gonadectomy. In this study, we found that these tumors express GATA-4, normally absent from the adult adrenal cortex, while GATA-6 expression is downregulated. Gonadal markers such as luteinizing hormone receptor, anti-Müllerian hormone and P450c17 are also expressed in the neoplastic cells, and the tumors produce gonadal hormones. The tumor cells have lost the expression of melanocortin-2 receptor and the CYP enzymes necessary for the synthesis of corticosterone and aldosterone. By way of xenograft studies utilizing NU/J nude mice, we confirmed that chronic gonadotropin elevation is sufficient to induce adrenocortical tumorigenesis in susceptible inbred strains. Collectively, these studies suggest that subcapsular adrenocortical progenitor cells can, under certain conditions, adopt a gonadal fate. We studied the molecular mechanisms involved in gene regulation in endocrine cells in order to elucidate the role of GATA factors in endocrine tissues. Ovarian granulosa cells express both GATA-4 and GATA-6, and the TGF-β signaling pathway is active in these cells. Inhibin-α is both a target gene for, and an atypical or antagonistic member of the TGF-β growth factor superfamily. In this study, we show that GATA-4 is required for TGF-β-mediated inhibin-α promoter activation in granulosa cells, and that GATA-4 physically interacts with Smad3, a TGF-β downstream protein. Apart from the regulation of steroidogenesis and other events in normal tissues, TGF-β signaling is implicated in tumors of multiple organs, including the adrenal cortex. Another signaling pathway found often to be aberrantly active in adrenocortical tumors is the Wnt pathway. As both of these pathways regulate the expression of inhibin-α, a transcriptional target for GATA-4 and GATA-6, we wanted to investigate whether GATA factors are associated with the components of these signaling cascades in human adrenocortical tumors. We found that the expression of Wnt co-receptors LRP5 and LRP6, Smad3, GATA-6 and SF-1 was diminished in adrenocortical carcinomas with poor outcome. All of these factors drive inhibin-α expression, and their expression in adrenocortical tumors correlated with that of inhibin-α. The results support a tumor suppressor role previously suggested for inhibin-α in the mouse adrenal cortex, and offer putative pathways associated with adrenocortical tumor aggressiveness. Unraveling the role of GATA factors and associated molecules in human and mouse adrenocortical tumors could ultimately contribute to the development of diagnostic tools and future therapies for these diseases.
Resumo:
Chronic kidney disease (CKD) is a worldwide health problem, with adverse outcomes of cardiovascular disease and premature death. The ageing of populations along with the growing prevalence of chronic diseases such as diabetes and hypertension is leading to worldwide increase in the number of CKD patients. It has become evident that inflammation plays an important role in the pathogenesis of atherosclerosis complications. CKD patients also have an increased risk of atherosclerosis complications (including myocardial infarction, sudden death to cardiac arrhythmia, cerebrovascular accidents, and peripheral vascular disease). In line with this, oral and dental problems can be an important source of systemic inflammation. A decline in oral health may potentially act as an early marker of systemic disease progression. This series of studies examined oral health of CKD patients from predialysis, to dialysis and kidney transplantation in a 10-year follow-up study and in a cross-sectional study of predialysis CKD patients. Patients had clinical and radiographic oral and dental examination, resting and stimulated saliva flow rates were measured, whilst the biochemical and microbiological composition of saliva was analyzed. Lifestyle and oral symptoms were recorded using a questionnaire, and blood parameters were collected from the hospital records. The hypothesis was that the oral health status, symptoms, sensations, salivary flow rates and salivary composition vary in different renal failure stages and depend on the etiology of the kidney disease. No statistically significant difference were seen in the longitudinal study in the clinical parameters. However, some saliva parameters after renal transplantation were significantly improved compared to levels at the predialysis stage. The urea concentration of saliva was high in all stages. The salivary and plasma urea concentrations followed a similar trend, showing the lowest values in kidney transplant patients. Levels of immunoglobulin (Ig) A, G and M all decreased significantly after kidney transplantation. Increased concentrations of IgA, IgG and IgM may reflect disintegration of the oral epithelium and are usually markers of poor general oral condition. In the cross-sectional investigation of predialysis CKD patients we compared oral health findings of diabetic nephropathy patients to those with other kidney disease than diabetes. The results showed eg. more dental caries and lower stimulated salivary flow rates in the diabetic patients. HbA1C values of the diabetic patients were significantly higher than those in the other kidney disease group. A statistically significant difference was observed in the number of drugs used daily in the diabetic nephropathy group than in the other kidney disease group. In the logistic regression analyses, age was the principal explanatory factor for high salivary total protein concentration, and for low unstimulated salivary flow. Poor dental health, severity of periodontal disease seemed to be an explanatory factor for high salivary albumin concentrations. Salivary urea levels were significantly linked with diabetic nephropathy and with serum urea concentrations. Contrary to our expectation, however, diabetic nephropathy did not seem to affect periodontal health more severely than the other kidney diseases. Although diabetes is known to associate with xerostomia and other oral symptoms, it did not seem to increase the prevalence of oral discomfort. In summary, this series of studies has provided new information regarding the oral health of CKD patients. As expected, the commencement of renal disease reflects in oral symptoms and signs. Diabetic nephropathy, in particular, appears to impart a requirement for special attention in the oral health care of patients suffering from this disease.
Resumo:
This dissertation discusses the relation between lexis, grammar and textual organisation. The major premise adopted here is that grammatical structures are motivated both by semantic potential of words and by text-pragmatic demands. In other words, it is argued that grammatical structures form the interface between lexis and textual organisation, and that linguistic analysis should not concentrate on analysing grammatical structures in isolation, independent of context. From this point of view, grammatical structures are said to be 'well-formed' only in relation to the context they occur in. This study is based on a corpus of three million words of recent Finnish fiction from which all the occurrences of the coordinated verb pairs ([V ja V] -pairs]) containing one of the intransitive motion verbs 'lähteä' (to go), 'mennä' (to go), 'päästä' (to get into), 'nousta' (to get up), and 'laskea' (to go down), were extracted. This set of verbs was established using methods described in earlier work by Lagus & Airola (2001, and 2005). The quantitative analysis of the [V ja V] -pairs was used to carry out a qualitative analysis of individual texts. In analysing the texts, an analogy was made between musical and textual structure. The results show among others that individual verbs specialise in different functions when occurring in coordinated verb pairs. One aspect was that those verb pairs including the verb 'nousta' tend to function as markers of textual boundaries and thus reflect the organisation of narrative substance. The verb 'mennä' has weakened literal meanings, but strengthened modal meanings when occurring in [V ja V] -pairs, and, in many cases, the verb 'lähteä' in [V ja V] -pairs function as an aspectual marker rather than a pure verb of motion. That there is a gradient from the concrete sense of motion into more differentiated senses of a verb in [V ja V] -pairs alongside the structure-creating potential of the [V ja V] -pairs themselves suggest an ongoing grammaticalisation process of the patterns discussed.
Resumo:
Gender in eastern Nyland – from dialect levelling to identity marking The study of dialect leveling in eastern Nyland focuses on variation and change in the Swedish dialects of Nyland (Fi. Uusimaa) on the south coast of Finland. During the last century the grammatical gender system of the dialects in the area has been reduced from a three-gender system to a two-gender system (cf. Corbett 1991). The present study is based on five linguistic variables in the gender system: the anaphoric pronouns (han, hon, den) when used for inanimates; the neuter pronouns he(t) and de(t) – when used anaphorically or as expletives; and three different types of morphological postposed definite articles. For all these variables, both dialect variants and standard variants are used in the dialects. Within the study of processes of variation and change, the work focuses on the mechanisms of leveling, simplification and reallocation; cf. Trudgill (1986) and Hinskens, Auer Kerswill (2005). With regard to the reductions of the gender system, the possibility that some of these variables might have turned into becoming dialect markers (Labov 1972) in the modern varieties of eastern Nyland is given special attention. The primary data consist of tape recordings with 25 informants done in the 1960s and 1970s. The informants were born in 1881–1913. In addition, recent changes were investigated in detail in tape recordings from 2005–2008 with 15 informants, who were born in the period 1927–1947 or 1976–1988. The study combines quantitative and qualitative methods in the systematic analysis of the data. Theoretically and methodologically the study relies on methods and results from variation studies and socio-dialectology, as well as on methods and results from traditional dialectology; cf. Ahlbäck (1946) and the dictionary of Swedish dialects, Ordbok över Finlands svenska folkmål, (1976–). The results show that there are different strategies among the informants in their use of the features studied. In the modern varieties of the dialects, most of the informants use only two genders, uter and neuter. Of the variables, the masculine pronoun for inanimates, the traditional neuter pronoun he(t) and some variants of the traditional definite articles have received a new function as dialect markers in my data. These changes first affect the gender distinctions, and the function of marking gender is lost; gradually the features then get new functions as dialect markers through processes of dialect leveling and reallocation. These processes are connected to changes taking place in the communities in eastern Nyland because of urbanization. When the dialect speakers experience that the traditional values of both the dialects and the culture are threatened, they begin to mark their dialectal identity by using dialect markers in their speech.