68 resultados para silicon oxide

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bulge test is successfully extended to the determination of the fracture properties of silicon nitride and oxide thin films. This is achieved by using long diaphragms made of silicon nitride single layers and oxide/nitride bilayers, and applying comprehensive mechanical model that describes the mechanical response of the diaphragms under uniform differential pressure. The model is valid for thin films with arbitrary z-dependent plane-strain modulus and prestress, where z denotes the coordinate perpendicular to the diaphragm. It takes into account the bending rigidity and stretching stiffness of the layered materials and the compliance of the supporting edges. This enables the accurate computation of the load-deflection response and stress distribution throughout the composite diaphragm as a function of the load, in particular at the critical pressure leading to the fracture of the diaphragms. The method is applied to diaphragms made of single layers of 300-nm-thick silicon nitride deposited by low-pressure chemical vapor deposition and composite diaphragms of silicon nitride grown on top of thermal silicon oxide films produced by wet thermal oxidation at 950 degrees C and 1050 degrees C with target thicknesses of 500, 750, and 1000 mn. All films characterized have an amorphous structure. Plane-strain moduli E-ps and prestress levels sigma(0) of 304.8 +/- 12.2 GPa and 1132.3 +/- 34.4 MPa, respectively, are extracted for Si3N4, whereas E-ps = 49.1 +/- 7.4 GPa and sigma(0) = -258.6 +/- 23.1 MPa are obtained for SiO2 films. The fracture data are analyzed using the standardized form of the Weibull distribution. The Si3N4 films present relatively high values of maximum stress at fracture and Weibull moduli, i.e., sigma(max) = 7.89 +/- 0.23 GPa and m = 50.0 +/- 3.6, respectively, when compared to the thermal oxides (sigma(max) = 0.89 +/- 0.07 GPa and m = 12.1 +/- 0.5 for 507-nm-thick 950 degrees C layers). A marginal decrease of sigma(max) with thickness is observed for SiO2, with no significant differences between the films grown at 950 degrees C and 1050 degrees C. Weibull moduli of oxide thin films are found to lie between 4.5 +/- 1.2 and 19.8 +/- 4.2, depending on the oxidation temperature and film thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares the properties of silicon oxide and nitride as host matrices for Er ions. Erbium-doped silicon nitride films were deposited by a plasma-enhanced chemical-vapour deposition system. After deposition, the films were implanted with Er3+ at different doses. Er-doped thermal grown silicon oxide films were prepared at the same time as references. Photoluminescence features of Er3+ were inspected systematically. It is found that silicon nitride films are suitable for high concentration doping and the thermal quenching effect is not severe. However, a very high annealing temperature up to 1200 degrees C is needed to optically activate Er3+ which may be the main obstacle to impede the application of Er-doped silicon nitride.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. The photoluminescenee(PL) from the silicon oxide films embedded with silicon nanocrystals was observed at room temperature. The strong peak is at 360 nm, its position is independent of the annealing temperature. The origin of the 360-nm PL in the silicon oxide films embedded with silicon nanoerystals was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural dependence on annealing of a-SiOx:H was studied by using infrared absorption and Raman scattering. The appearance of Raman peaks in the range of 513-519cm(-1) after 1170 degreesC annealing was interpreted as the formation nanocrystalline silicon with the sizes from 3-10nm. The Raman spectra also show the existence of amorphous-like silicon phase, which is associated with Si-Si bond re-construction at boundaries of silicon nanocrystallites. The presence of the shoulder at 980cm(-1) of Si-O-Si stretching vibration at 1085cm(-1) in infrared spectra imply that except that SiO2 phase, there is silicon sub-oxide phase in the films annealed at 1170 degreesC. This sub-oxide phase is located at the interface between Si crystallites and SiO2, and thus support the shell model for the mixed structures of Si grains and SiO2 matrix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silicon-rich silicon oxide (SRSO) films are prepared by plasma-enhanced chemical vapor deposition method at the substrate temperature of 200degreesC. The effect of rapid thermal annealing and hydrogen plasma treatment on tire microstructure and light-emission of SRSO films are investigated in detail using micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectra. It is found that the phase-separation degree of the films decreases with increasing annealing temperature from 300 to 600degreesC, while it increases with increasing annealing temperature from 600 to 900degreesC. The light-emission of the films are enhanced with increasing annealing temperature up to 500degreesC, while it is rapidly reduced when the annealing temperature exceeds 600degreesC. The peak position of the PL spectrum blueshifts by annealing at the temperature of 300degreesC, then it red-shifts with further raising annealing temperature. The following hydrogen plasma treatment results in a disproportionate increase of the PL intensity and a blueshift or redshift of the peak positions, depending on the pristine annealing temperature. It is thought that the size of amorphous silicon clusters, surface structure of the clusters and the distribution of hydrogen in the films can be changed during the annealing procedure. The results indicate that not only cluster size but also surface state of the clusters plays an important role in the determination of electronic structure of the amorphous silicon cluster and recombination process of light-generated carriers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study focuses on mechanism of ceramic coating on Al-Si alloys with bulk primary Si using plasma electrolytic oxidation (PEO) technology. Al-Si alloys with 27-32% Si in weight were used as substrates. The morphologies, composition and microstructure of PEO coatings were investigated by scanning electron microscopy (SEM) with energy dispersive X-ray system (EDX). Results showed that the PEO process had four different stages. The effect of bulk Si is greatly on the morphology and composition of coatings at first three stages. Anodic oxide films formed on Al and Si phases, respectively. When the voltage exceeded 40 V, glow appeared and concentrated on the localized zone of interface of Al and Si phase. Al-Si-O compounds formed and covered on the dendrite Si phase surface, and the coating on bulk Si, which was silicon oxide, was rougher than that on other phase. If the treatment time was long enough, the coatings with uniform surface morphologies and elements distribution will be obtained but the microstructure of inner layer is looser due to the bulk Si.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have investigated the magnetic properties of Co-doped zinc oxide (ZnO) film deposited on silicon substrate by magnetron sputtering. Co ions have a valence of 2+ and substitute for Zn sites in the lattice. By using a chemical etching method, an extrinsic ferromagnetism was demonstrated. The observed ferromagnetism is neither associated with magnetic precipitates nor with contamination, but originates from the silicon/silicon oxide interface. This interface ferromagnetism is characterized by being temperature independent and by having a parallel magnetic anisotropy. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989128]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An investigation on the correlation between amorphous Si (a-Si) domains and Er3+ emission in the Er-doped hydrogenated amorphous silicon suboxide (a-Si:O:H) film is presented. On one hand, a-Si domains provide sufficient carriers for Er3+ carrier-mediated excitation which has been proved to be the highest excitation path for Er3+ ion; on the other hand, hydrogen diffusion from a-Si domains to amorphous silicon oxide (a-SiOx) matrix during annealing has been found and this possibly decreases the number of nonradiative centres around Er3+ ions. This study provides a better understanding of the role of a-Si domains on Er3+ emission in a-Si:O:H films.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three kinds of coplanar waveguides (CPWs) are designed and fabricated on different silicon substrates---common low-resistivity silicon substrate (LRS), LRS with a 3μm-thick silicon oxide interlayer, and high-resistivity silicon (HRS) substrate. The results show that the microwave loss of a CPW on LRS is too high to be used, but it can be greatly reduced by adding a thick interlayer of silicon oxide between the CPW transmission lines and the LRS.A CPW directly on HRS shows a loss lower than 2dB/cm in the range of 0-26GHz and the process is simple,so HRS is a more suitable CPW substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the structural defects in the SiOx film prepared by electron cyclotron resonance plasma chemical vapour deposition and annealing recovery evolution. The photoluminescence property is observed in the as-deposited and annealed samples. [-SiO3](2-) defects are the luminescence centres of the ultraviolet photoluminescence (PL) from the Fourier transform infrared spectroscopy and PL measurements. [-SiO3](2-) is observed by positron annihilation spectroscopy, and this defect can make the S parameters increase. After 1000 degrees C annealing, [-SiO3](2-) defects still exist in the films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epitaxial cerium dioxide films on single-crystal silicon substrates (CeO2/Si) have been grown by a dual mass-analyzed low-energy ion beam deposition (IBD) system. By double-crystal X-ray diffraction (XRD), Full Width at Half Maximum (FWHM) are 23' and 33' in the rocking curves for (222) and (111) faces of the CeO2 film, respectively, and the lattice-mismatch Delta a/a with the substrate is about - 0.123%. The results show that the CeO2/Si grown by IBD is of high crystalline quality. In this work, the CeO2/Si heterostructure were investigated by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) measurements. Especially, XPS and AES depth profiling was used to analyze the compositions and structures in the interface regions of the as-grown and post-annealed CeO2/Si. It was found that there was no silicon oxide in the interface region of the as-grown sample but silicon oxide in the post-annealed sample. The reason for obtaining such high quality heterostructure mainly depends on the absence of silicon oxide in the surface at the beginning of the deposition. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have examined photoluminescence (PL), IR absorption and Raman spectra of a series of hydrogenated amorphous silicon oxide (a-SiOx:H, (0 < x < 2)) films fabricated by plasma enhanced chemical vapor deposition (PECVD). Two strong luminescence bands were observed at room temperature, one is a broad envelope comprising a main peak around 670 nm and a shoulder at 835 nm, and the other, peaked around 850 nm; is found only after being annealed up to 1170 degrees C in N-2 environment. In conjunction with IR and Raman spectra, the origins of the two luminescent bands and their annealing behaviors are discussed on the basis of quantum confinement effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study. Nafion (R) 117 membrane is surface-modified with mesoporous silica layers through in situ surfactant-templated sol-gel reaction. The reaction makes use of tetraethyl orthosilicate (TEOS) under acidic condition via dip-coating technique on both sides. Scanning electron microscopy (SEM), Fourier transformation infrared (FTIR), and thermogravimetric analysis (TGA) are employed to characterize the resultant membranes. Proton conductivity and methanol permeability of the membranes are also studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

GaN epilayers have been deposited on silicon-on-insulator (SOI) and bulk silicon substrates. The stress transition thickness and the initial compressive stress of a GaN epilayer on the SOI substrate are larger than those on the bulk silicon substrate, as shown in in situ stress measurement results. It is mainly due to the difference of the three-dimensional island density and the threading dislocation density in the GaN layer. It can increase the compressive stress in the initial stage of growth of the GaN layer, and helps to offset the tensile stress generated by the lattice mismatch.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on a Si1-xGex/Si multiple quantum-well resonant-cavity-enhanced (RCE) photodetector with a silicon-on-oxide reflector as the bottom mirror operating near 1.3 mu m. The breakdown voltage of the photodetector is above 18 V and the dark current density at 5 V reverse bias is 12 pA/mu m(2). The RCE photodetector shows enhanced responsivity with a clear peak at 1.285 mu m and the peak responsivity is measured around 10.2 mA/W at a reverse bias of 5 V. The external quantum efficiency at 1.3 mu m is measured to be 3.5% under reverse bias of 16 V, which is enhanced three- to fourfold compared with that of a conventional p-i-n photodetector with a Ge content of 0.5 reported in 1995 by Huang [Appl. Phys. Lett. 67, 566 (1995)]. (C) 2000 American Institute of Physics. [S0003-6951(00)00628-8].