340 resultados para photoluminescence mechanism
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The interface state recombination effect from the quantum confinement effect in PL signals from the SRO material system was studied. The results show that the larger the size of Si NCs, the more beneficial for the interface state recombination process to surpass the quantum confinement process, in support of Qin's model.
Resumo:
Under short pulse laser excitation, we have observed an extra high-energy photoluminescence (PL) emission from GaNAs/GaAs single quantum wells (QWs). It dominates the PL spectra under high excitation and/or at high temperature. By measuring the PL dependence on both temperature and excitation power and by analyzing the time-resolved PL results, we have attributed the PL peak to the recombination of delocalized excitons in QWs. Furthermore, a competition process between localized and delocalized excitons is observed in the temperature-dependent PL spectra under the short pulse excitation. This competition is believed to be responsible for the temperature-induced S-shaped PL shift often observed in the disordered alloy semiconductor system under continuous-wave excitation. (C) 2001 American Institute of Physics.
Resumo:
The authors report the optical characteristics of GaSb/InAs/GaAs self-assembled heterojunction quantum dots (QDs). With increasing GaSb deposition, the room temperature emission wavelength can be extended to 1.56 mu m. The photoluminescence mechanism is considered to be a type-II transition with electrons confined in InAs and holes in GaSb.(C) 2008 American Institute of Physics.
Resumo:
Nanocrystalline silicon embedded SiO2 matrix has been formed by annealing the a-SiOx films fabricated by plasma enhanced chemical vapor deposition technique. Absorption and photoluminescence spectra of, the films have been studied in conjunction with micro-Raman scattering spectra. It is found that absorption presents an exponential dependence of absorption coefficient to photon energy in the range of 1.5-3.0 eV, and a sub-band appears in the range of 1.0-1.5 eV. The exponential absorption is due to the indirect band-to-band transition of electrons in silicon nanocrystallites, while the sub-band absorption is ascribed to transitions between surfaces and/or defect states of the silicon nanocrystallites. The existence of Stokes shift between absorption and photoluminescence suggests that the phonon-assisted luminescence would he enhanced due to the quantum confinement effects.
Resumo:
The photoluminescence (PL) intensity enhancement and suppression mechanism on surface plasmons (SPs) coupling with InGaN/GaN quantum wells (QWs) have been systematically studied. The SP-QW coupling behaviors in the areas of GaN cap layer coated with silver thin film were compared at different temperatures and excitation powers. It is found that the internal quantum efficiency (IQE) of the light emitting diodes (LEDs) varies with temperature and excitation power, which in turn results in anomalous emission enhancement and suppression tendency related to SP-QW coupling. The observation is explained by the balance between the extraction efficiency of SPs and the IQE of LEDs
Resumo:
Wurtzite stalactite-like quasi-one-dimensional ZnS nanoarrays with ZnO protuberances were synthesized through a thermal evaporation route. The structure and morphology of the samples are studied and the growth mechanism is discussed. X-ray diffraction (XRD) results show both the ZnS stem and the ZnO protuberances have wurtzite structure and show preferred [001] oriented growth. The photoluminescence and field emission properties have also been investigated. Room temperature photoluminescence result shows it has a strong green light emission, which has potential application for green light emitter. Experimental results also show that the stalactite arrays have a good field emission property, with turn-on field of 11.4 V/mu m, and threshold field of 16 V/mu m. The ZnO protuberances on the ZnS stem might enhance the field emission notably.
Photoluminescence study of AlGaInP/GaInP quantum well intermixing induced by zinc impurity diffusion
Resumo:
AlGaInP/GaInP quantum well intermixing phenomena induced by Zn impurity diffusion at 540 degrees C were studied using room-temperature photo luminescence (PL) spectroscopy. As the diffusion time increased from 40 to 120 min, PL blue shift taken on the AlGaInP/GaInP quantum well regions increased from 36.3 to 171.6 meV. Moreover, when the diffusion time was equal to or above 60 min, it was observed firstly that a PL red shift occurred with a PL blue shift on the samples. After detailed analysis, it was found that the red-shift PL spectra were measured on the Ga0.51In0.49P buffer layer of the samples, and the mechanism of the PL red shift and the PL blue shift were studied qualitatively. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report a systematical study on the molecular beam epitaxy growth and optical property of (GaAs1-xSbx/In-y Ga1-yAs)/GaAs bilayer quantum well (BQW) structures. It is shown that the growth temperature of the wells and the sequence of layer growth have significant influence on the interface quality and the subsequent photoluminescence (PL) spectra. Under optimized growth conditions, three high-quality (GaAsSb0.29/In0.4GaAs)/GaAs BQWs are successfully fabricated and a room temperature PL at 1314 nm is observed. The transition mechanism in the BQW is also discussed by photoluminescence and photoreflectance measurements. The results confirm experimentally a type-II band alignment of the interface between the GaAsSb and InGaAs layers.
Resumo:
Time-resolved photoluminescence (PL) of sub-monolayer (SML) InGaAs/GaAs quantum-dot-quantum-well heterostructures was measured at 5 K for the first time. The radiative lifetime of SML quantum dots (QDs) increases from 500 ps to 800 ps with the increase of the size of QDs, which is related to the small confinement energy of the excitons inside SML QDs and the exciton transfer from smaller QDs to larger ones through tunneling. The rise time of quantum-dot state PL signal strongly depends on the excitation power density. At low excitation power density, the rise time is about 35 ps, the mechanism of carrier capture is dominated by the emission of longitudinal-optical phonons. At high excitation power density, the rise time decreases as the excitation density increases, and Auger process plays an important role in the carrier capture. These results are very useful for understanding the working properties of sub-monolayer quantum-dot devices.
Resumo:
The microstructural and optical analysis of Si layers emitting blue luminescence at about 431 nm is reported. These structures have been synthesized by C+ ion implantation and high-temperature annealing in hydrogen atmosphere and electrochemical etching sequentially. With the increasing etching time, the intensity of the blue peak increases at first, decreases then and is substituted by a new red peak at 716 nm at last, which shows characteristics of the emission of porous silicon. C=O compounds are induced during C+ implantation and nanometer silicon with embedded structure is formed during annealing, which contributes to the blue emission. The possible mechanism of photoluminescence is presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We investigate the effect of rapid thermal annealing on InGaNAs/GaAs quantum wells. At optimized annealing temperatures and times, the greatest enhancement of the photoluminescence intensity is obtained by a special two-step annealing process. To identify the mechanism affecting the material quality during the rapid thermal annealing, differential temperature analysis is applied, and temperature- and power-dependent photoluminescence is carried out on the samples annealed under different conditions. Our experiment reveals that some composition redistribution or other related ordering process may occur in the quantum-well layer during annealing. Annealing at a lower temperature for a long time primarily can remove defects and dislocations while annealing at a higher temperature for a short time primarily homogenizes the composition in the quantum wells.
Resumo:
Arrays of vertically well-aligned ZnO nanorod-nanowall junctions have been synthesized on an undoped ZnO-coated silicon substrate by a carbothermal reduction and vapour phase transport method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the nanostructures are well-oriented with the c-axis perpendicular to the substrate. The room temperature photoluminescence (PL) spectrum of the as-prepared ZnO nanostructure reveals a dominant near-band-edge (NBE) emission peak and a weak deep level (DL) emission, which demonstrates its good optical properties. Temperature-dependent PL spectra show that both the intensity of NBE and DL emissions increased with decreasing temperature. The NBE emission at 3.27 eV is identified to originate from the radiative free exciton recombination. The possible growth mechanism of ZnO nanorod-nanowall junctions is also proposed.
Resumo:
Vertically well-aligned ZnO nanoridge, nanorod, nanorod-nanowall junction, and nanotip arrays have been successfully synthesized on Si (100) substrates using a pulsed laser deposition prepared ZnO film as seed layer by thermal evaporation method. Experimental results illustrated that the growth of different morphologies of ZnO nanostructures was strongly dependent upon substrate temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the ZnO nanostructures were single crystals with a wurtzite structure. Compared with those of the other nanostructures, the photoluminescence (PL) spectrum of nanorod-nanowall junctions showed the largest intensity ratio of ultraviolet (UV) to yellow-green emission and the smallest full-width at half-maximum (FWHM) of the UV peak, reflecting the high optical quality and nearly defect free of crystal structure. The vertical alignment of the nanowire array on the substrate is attributed to the epitaxial growth of the nanostructures from the ZnO buffer layer. The growth mechanism was also discussed in detail. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Low temperature (10 K) strong anti-Stokes photoluminescence (ASPL) of ZnO microcrystal excited by low power cw 532 nm laser is reported here. Energy upconversion of 1.1 eV is obtained in our experiment with no conventional nonlinear effect. Through the study of the normal photoluminescence and temperature dependence of ASPL we conclude that the green band luminescence in ZnO is related to deep donor to valance band transition. Using the two-step two-photon absorption model, we provide a plausible mechanism leading to the ASPL phenomenon in our experiment. (c) 2006 American Institute of Physics.
Resumo:
Thermal annealing of GaInAs/GaNAs quantum wells (QWs) as well as other nitrogen- and indium-contained QW structures grown by molecular beam epitaxy and its effect on optical properties are investigated. The photoluminescence (PL) and photovoltaic (PV) spectra of annealed GaInAs/GaNAs QWs show that the luminescence properties become degraded due to the N diffusion from the GaNAs barrier layers to the GaInAs well layer. Meantime, the annealing-induced blueshift of the PL peak in this QW system is mainly induced by the change of In distribution, suggesting that the In reorganization is greatly assisted by the N-induced defects. The elucidation of annealing effect in GaInAs/GaNAs QW samples is helpful for a better understanding to the annealing effect in the GaInNAs/GaAs QWs. (C) 2003 Elsevier Science B.V. All rights reserved.