125 resultados para phenolic compound
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Nanocrystalline intermetallic Co3Fe7 was produced on the surface of cobalt via surface mechanical attrition (SMA). Deformationinduced diffusion entailed the formation of a series of solid solutions. Phase transitions occurred depending on the atomic fraction of Fe in the surface solid solutions: from hexagonal close-packed (<4% Fe) to face-centered cubic (fcc) (4-11% Fe), and from fcc to body-centered cubic (>11% Fe). Nanoscale compositional probing suggested significantly higher Fe contents at grain boundaries and triple junctions than grain interiors. Short-circuit diffusion along grain boundaries and triple junctions dominate in the nanocrystalline intermetallic compound. Stacking faults contribute significantly to diffusion. Diffusion enhancement due to high-rate deformation in SMA was analyzed by regarding dislocations as solute-pumping channels, and the creation of excess vacancies. Non-equilibrium, atomic level alloying can then be ascribed to deformation-induced intermixing of constituent species. The formation mechanism of nanocrystalline intermetallic grains on the SMA surface can be thought of as a consequence of numerous nucleation events and limited growth. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, 1.5Cr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25 mu m thick and consisted of the intermetallic compound FeCr with an average grain size of 25 +/- 10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.
Resumo:
High-efficiency separation of the oil/gas/water mixtures is a significant issue in offshore oil industry. To reduce the total cost by means of reduction in weight and space compared with conventional separators, a novel compact compound oil/gas/water separator is developed. The research works on oil-gas-water separation by compound separating techniques is described in this paper. The innovative separator is a gravity settling tank with helical pipes within and T-shaped pipes outside. Both experiments and numerical simulations are presented to study the separating performance and efficiency of the helical pipes, which are the main part of the separator.
Resumo:
A novel symmetrical charge transfer fluorene-based compound 2,7-bis (4-methoxystyryl)-9, 9-bis (2-ethylhexyl)-9H-fluorene (abbreviated as BMOSF) was synthesized and its nonlinear absorption was investigated using two different laser systems: a 140-fs, 800-nm Ti:sapphire laser operating at 1-kHz repetition rate and a 38-ps, 1064-nm Nd:YAG pulsed laser operating at 10-Hz repetition rate, respectively. Unique nonlinear absorption properties in this new compound were observed that rise from multiphoton absorption. The nonlinear absorption coefficients were measured to be 6.02