126 resultados para MICROWAVE PHOTODETECTORS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A new optimized structure of an UTC (uni-traveling-carrier) photodiode is developed and epitaxied by metal-organic chemical vapor deposition. We fabricated a UTC photodiode of 30 mu m in diameter. Theoretical simulation based on drift-diffusion model was used to analyze the space-charge-screening effect in UTC photodiode primarily in two aspects: the carrier concentrations and the space electric field. The simulation results were generally in agreement with the experimental data.
Resumo:
An improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system consisting of a distributed Bragg reflector laser is proposed. The time-resolved spectrum technique is used to measure the peak power of the beat signal and the intrinsic linewidth of heat signal for calibration. The experimental results show that the impact of the thermal-induced frequency drift, which is the main reason for producing an error in measurement by conventional peak power method and spectrum power method, can be removed.
Resumo:
The influence of non-equilibrium plasma layer pressure and thickness on the transmission of microwave is considered when the incidence of wave is at an arbitrary angle. The plasma is cold, weakly ionized, and steady-state. It is assumed that it is a layered media with a kind of distribution of electron number density and the microwave is a plane wave. The results show that the pressure of plasma affects the absorption of microwave deeply, and the thickness relatively weakly in a non-equilibrium plasma slab.
Resumo:
We investigate the steady-state optical bistability behavior in a three-level A-type atomic system closed by a microwave field under the condition that the applied fields are in resonance with corresponding atomic transitions. It is shown that the bistable hysteresis cycles can be controlled by both the amplitude and the phase of the microwave field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
It is the first time in China that the phase variations and phase shift of microwave cavity in a miniature Rb fountain frequency standard are studied, considering the effect of imperfect metallic walls. Wall losses in the microwave cavity lead to small traveling wave components that deliver power from the cavity feed to the walls of cavity. The small traveling wave components produce a microradian distribution of phase throughout the cavity ity, and therefore distributed cavity phase shifts need to be considered. The microwave cavity is a TE011 circular cylinder copper cavity, with round cut-hole of end plates (14mm in diameter) for access for the atomic flux and two small apertures in the center of the side wall for coupling in microwave power. After attenuation alpha is calculated, field variations in cavity are solved. The field variations of the cavity are given. At the same time, the influences of loaded quality factor QL and diameter/height (2a/d) of the microwave cavity on the phase variations and phase shift are considered. According to the phase variation and phase shift of microwave cavity we select the parameters of cavity, diameter 2a = 69.2mm, height d = 34.6mm, QL = 5000, which will result in an uncertainty delta(Delta f / f0 ) < 4.7 x 10(-17) and meets the requirement for the miniature Rb fountain frequency standard with accuracy 10(-15).
Resumo:
We have theoretically investigated the phase shift of a probe field for a four-level atomic system interacting successively with two fields tuned near an EIT resonance of an atom, a microwave field, and a coupling field. It has been found that the phase of retrieved signal has been shifted due to the cross-phase modulation when the stored spin wave was disturbed by a microwave. Because of the low relaxation rates of the ground hyperfine state, our proposed technique can impart a large phase rotation onto the probe field with low absorption of retrieved field and very low intensity of the microwave field.
Resumo:
This paper investigates the absorptive spectral lines of four-level atomic system driven by a coupling, probe and microwave fields. Due to the perturbation of the microwave field, the original electromagnetically induced transparency is changed to electromagnetically induced absorption and the absorptive spectral line can be very narrow. This ultranarrow spectral line has potential applications to the microwave atomic frequency standard and the measurement of very weak magnetic field.
Resumo:
In this work, microwave dielectric properties of A-site substitution by La3+ in (Pb0.45Ca0.55) (Fe0.5Nb0.5) 03 system were investigated. Microwave dielectric properties of A-site charge unbalance substitution of [(Pb0.45Ca0.55)(1-x) La-x] (Fe0.5Nb0.5)O-3(+) (P45CLFN) were improved because the solid solution of small amount of surplus La3+ with (Pb, Ca)(2+) could eliminate oxygen vacancies, and the formation of secondary phase (pyrochlore) was also caused by surplus La3+. The decreasing of dielectric constant with the increase of La3+ content is due to the formation of pyrochlore. The grain size is changed slightly and Q(f) values (7000 similar to 7300 GHz) are almost unchanged at x = 0.02 similar to 0.10, but the temperature coefficient of resonant frequency (TCF) are increased and changed from negative to positive. TCF is zero at x 0.075 with Q(f) = 7267 GHz and K = 89. TCF of all specimens are within +/- 5 x 10(-6)degrees C-1.
Resumo:
4H-silicon carbide (SiC) metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors with Al2O3/SiO2 (A/S) films employed as antireflection/passivation layers have been demonstrated. The devices showed a peak responsivity of 0.12 A/W at 290 nm and maximum external quantum efficiency of 50% at 280 nm under 20 V electrical bias, which were much larger than conventional MSM detectors. The redshift of peak responsivity and response restriction effect were found and analyzed. The A/S/4H-SiC MSM photodetectors were also shown to possess outstanding features including high UV to visible rejection ratio, large photocurrent, etc. These results demonstrate A/S/4H-SiC photodetectors as a promising candidate for OEIC applications. (C) 2008 American Institute of Physics.
Resumo:
The properties of electron states in the presence of microwave irradiation play a key role in understanding the oscillations of longitudinal resistance and the zero-resistance states in a high-mobility two-dimensional electron gas(2DEG) in low magnetic field. The properties of electron states in a high-mobility and low-density GaAs/Al0.35Ga0.65As 2DEG in the presence of Ka-band microwave irradiation were studied by reflectance-based optically detected cyclotron resonance(RODCR). The influences of the direction of microwave alternating electronic field, wavelength of the laser, and temperature on RODCR results were discussed. The results show that RODCR measurements provide a convenient and powerful method for studying electron states in 2DEG.
Resumo:
Top-illuminated metamorphic InGaAs p-i-n photodetectors (PDs) with 50% cut-off wavelength of 1.75 mu m at room temperature are fabricated on GaAs substrates. The PDs are grown by a solid-source molecular beam epitaxy system. The large lattice mismatch strain is accommodated by growth of a linearly graded buffer layer to create a high quality virtual InP substrate indium content in the metamorphic buffer layer linearly changes from 2% to 60%. The dark current densities are typically 5 x 10(-6) A/cm(2) at 0 V bias and 2.24 x 10(-4) A/cm(2) at a reverse bias of 5 V. At a wavelength of 1.55 mu m, the PDs have an optical responsivity of 0.48 A/W, a linear photoresponse up to 5 mW optical power at -4 V bias. The measured -3 dB bandwidth of a 32 mu m diameter device is 7 GHz. This work proves that InGaAs buffer layers grown by solid source MBE are promising candidates for GaAs-based long wavelength devices.
Resumo:
The leakage current of GaN Schottky barrier ultraviolet photodetectors is investigated. It is found that the photodetectors adopting undoped GaN instead of lightly Si-doped GaN as an active layer show a much lower leakage current even when they have a higher dislocation density. It is also found that the density of Ga vacancies in undoped GaN is much lower than in Si-doped GaN. The Ga vacancies may enhance tunneling and reduce effective Schottky barrier height, leading to an increase of leakage current. It suggests that when undoped GaN is used as the active layer, it is necessary to reduce the leakage current of GaN Schottky barrier ultraviolet photodetector.
Resumo:
The error theory of linear equation system has been applied to the calibration procedure of microwave network analyser in this article. A new explanation for the choice of the linear calibration equations is proposed and a general principle for choosing calibration equations is presented. The method can also be used to predict the occurrence of the problem of frequency limitation at some periodic frequencies. This principle is employed to the thru-short-delay (TSD) method and the solution using the chosen equations gives the most accurate results. A good agreement between the theory and the experiment has been obtained.
Resumo:
A new device of two parallel distributed feedback ( DFB) laser integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB lasers in parallel, which had a small difference in frequency. Continuous rapidly tunable optical microwave signals from 13 GHz to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.