22 resultados para Left-Continuous Random Walk
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this paper, based on Einstein relationship between diffusion and random walk, the electrochemical behavior of a system with a limited number of molecules was simulated and explored theoretically. The transition of the current vs time responses from discrete to continuous was clearly obtained as the number of redox molecules increased from 10 to 10(6).
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.
Resumo:
This paper presents a 2GS/s 10-bit CMOS digital-to-analog converter (DAC). This DAC consists of a unit current-cell matrix for 6MSBs and another unit current-cell matrix for 4LSBs, trading off between the precision and size of the chip. The Current Mode Logic (CML) is used to ensure high speed, and a double Centro-symmetric current matrix is designed by the Q(2) random walk strategy in order to ensure the linearity of the DAC. The DAC occupies 2.2 x 2.2 mm2 of die area, and consumes 790mw at a single 3.3V power supply.
Resumo:
This paper describes a 12-bit 300 MHz CMOS DAC for high-speed system applications. The proposed DAC consists of a unit current-cell matrix for 8 MSBs and a binary-weighted array for 4 LSBs. In order to ensure the linearity of DAC, a double Centro symmetric current matrix is designed by using the Q(2) random walk strategy. To minimize the feedthrough and improve the dynamic performance, the drain of the switching transistors is isolated from the output lines by adding two cascoded transistors.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a 4th-order single-stage pipelined delta-sigma interpolator and a 300MS/s 12-bit current-steering DAC based on Q(2) Random Walk switching scheme. The delta-sigma interpolator is used to reduce the phase truncation error and the ROM size. The measured spurious-free dynamic range (SFDR) is greater than 80 dB for 8-bit phase value and 12-bit sine-amplitude output. The DDFS prototype is fabricated in a 0.35um CMOS technology with core area of 1.11mm(2).
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.
Resumo:
提出了一个刷新率达2GHz的10位电流驱动型数模转换器.在综合了精度与芯片面积等因素之后,该数模转换器使用6+4结构.采用电流型逻辑以提高转换器的速度,并采用Q~2 random walk方法设计了一个双中心对称的电流矩阵,确保数模转换器的线性度.该数模转换器核心版图面积为2.2mm×2.2mm,在3.3V单电压供电的情况下,该芯片功耗为790mW.
Resumo:
The proposed DAC consists of a unit current-cell matrix for 8MSBs and a binary-weighted array for 4LSBs, trading-off between the precision, speed, and size of the chip. In order to ensure the linearity of the DAC, a double Centro symmetric current matrix is designed by the Q2 random walk strategy. To achieve better dynamic performance, a latch is added in front of the current switch to change the input signal, such as its optimal cross-point and voltage level. For a 12bit resolution,the converter reaches an update rate of 300MHz.
Resumo:
For a sphere electrode enclosed in finite-volume electrolyte, the measured current will deviate from the result predicted by the semi-infinite diffusion theory after some time. By random-walk simulation, we compared this time to the one needed for diffusion layer to reach electrolyte boundary, and revealed a clear signal delay of electrochemical current. Further we presented a quantitative description of this delay time. The simulation results suggested that the semi-infinite diffusion theory can even be applied when the theoretical diffusion layer grows to 1.28 electrolyte thicknesses, with an accuracy better than 0.5%. We attributed this time delay to the molecules' finite propagation velocity. Finally, we discussed how this delay can influence and facilitate the following electrochemical detection towards the nanometer and single-cell scale.
Resumo:
本文研究了移动机器人在湍流环境中定位多个化学羽流源的问题。利用粒子随机行走方法建立动态羽流模型。在此环境中机器人进行梳状搜索并采集羽流数据,使用一种基于后验概率独立假设的改进贝叶斯算法融合这些传感器数据建立一张羽流源位置的概率地图,地图中具有高概率值的栅格指出了羽流源可能的位置。仿真结果说明了该方法的有效性,通过与标准贝叶斯算法的比较说明了该方法优点。
Resumo:
The Mapping Closure Approximation (MCA) approach is developed to describe the statistics of both conserved and reactive scalars in random flows. The statistics include Probability Density Function (PDF), Conditional Dissipation Rate (CDR) and Conditional Laplacian (CL). The statistical quantities are calculated using the MCA and compared with the results of the Direct Numerical Simulation (DNS). The results obtained from the MCA are in agreement with those from the DNS. It is shown that the MCA approach can predict the statistics of reactive scalars in random flows.
Resumo:
The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.
Resumo:
The forces of random wave plus current acting on a simplified offshore platform (jacket) model have been studied numerically and experimentally. The numerical results are in good agreement with experiments. The mean force can be approximated as a function of equivalent velocity parameter and the root-mean-square force as a function of equivalent significant wave height parameter.
Resumo:
A fiber web is modeled as a three-dimensional random cylindrical fiber network. Nonlinear behavior of fluid flowing through the fiber network is numerically simulated by using the lattice Boltzmann (LB) method. A nonlinear relationship between the friction factor and the modified Reynolds number is clearly observed and analyzed by using the Fochheimer equation, which includes the quadratic term of velocity. We obtain a transition from linear to nonlinear region when the Reynolds numbers are sufficiently high, reflecting the inertial effect of the flows. The simulated permeability of such fiber network has relatively good agreement with the experimental results and finite element simulations.