81 resultados para Hairless Mouse Skin
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Both the rhino mouse and hairless mouse resulted from hairless gene mutation, but they show different phenotypes of skin physiology. The rhino mouse has more similar histological characters to human papular alopecia. Therefore rhino mouse is a good experimental animal model for human papular alopecia. This study reports a hairless mouse named rhino KIZ, arose from KM colony in Kunming Institue of Zoology, by systematic studies on morphology, skin histopathology, gene sequence, pedigree and protein domain analysis. The results demonstrate that a C-to-T transition in exon 11 of hr gene (The mutant gene has been applied for a Chinese patent (patent No. 03135280)) results in the rhino KIZ. The rhino KIZ with clear genetic mechanism will be a useful animal model.
Resumo:
Gene mapping of a mouse coat mutation has been investigated. First, 100 10-bp random primers were used to amplify DNA, but the mutation could not be located by this method because there were no correlation between the amplified products and coat phenotypes. Second, by using Idh1, Car2, Mup1, Pgb1, Hbb, Es10, Es1, Mod1, Gdc1, Ce2, Es3 as genetic markers, linkage test crosses (two-point test) consisting of intercrossing uncovered BALB/c mice (homozygotes) to CBA/N and C57BL/6 mice with normal hair and backcrossing the heterozygotes of the F1 to the uncovered BALB/c mice were made. It was soon evident that the mutation was linked to Es3 on chromosome 11. Furthermore, three-point test was made by using Es3 and D11Mit8 (a microsatellite DNA) as genetic markers. The result showed that the mutation was linked to Es3 with the percentage recombination of (7.89 +/- 2.19)%, and linked to D11Mit8 with the percentage recombination of (26.38 +/- 3.57)%. The percentage recombination between Es3 and D11Mit8 was (32.90 +/- 3.81)%. The mutation was named Uncovered, with the symbol Uncv. According to the recombinations, the loci order was D11Mit8-26.30 +/- 3.57- Uncv-7.89 +/- 2.19-Es3. From the location on the chromosome, it was concluded that the mutation was a new mutation which affected the skin and hair structure of mouse. The Uncv has entered MGD (Mouse Genome Database).
Resumo:
We report on the hybridization of mouse chromosomal paints to Apodemus sylvaticus, the long-tailed field mouse. The mouse paints detected 38 conserved segments in the Apodemus karyotype. Together with the species reported here there are now six species of rodents mapped with Mus musculus painting probes. A parsimony analysis indicated that the syntenies of nine M. musculus chromosomes were most likely already formed in the muroid ancestor: 3, 4, 7, 9, 14, 18, 19, X and Y. The widespread occurrence of syntenic segment associations of mouse chromosomes 1/17, 2/13, 7/19, 10/17, 11/16, 12/17 and 13/15 suggests that these associations were ancestral syntenies for muroid rodents. The muroid ancestral karyotype probably had a diploid number of about 2n = 54. It would be desirable to have a richer phylogenetic array of species before any final conclusions are drawn about the Muridae ancestral karyotype. The ancestral karyotype presented here should be considered as a working hypothesis. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
CpG islands (CGIs) are often considered as gene markers, but the number of CGIs varies among mammalian genomes that have similar numbers of genes. In this study, we investigated the distribution of CGIs in the promoter regions of 3,197 human-mouse ortholo
Resumo:
Background: Due to the advances of high throughput technology and data-collection approaches, we are now in an unprecedented position to understand the evolution of organisms. Great efforts have characterized many individual genes responsible for the interspecies divergence, yet little is known about the genome-wide divergence at a higher level. Modules, serving as the building blocks and operational units of biological systems, provide more information than individual genes. Hence, the comparative analysis between species at the module level would shed more light on the mechanisms underlying the evolution of organisms than the traditional comparative genomics approaches. Results: We systematically identified the tissue-related modules using the iterative signature algorithm (ISA), and we detected 52 and 65 modules in the human and mouse genomes, respectively. The gene expression patterns indicate that all of these predicted modules have a high possibility of serving as real biological modules. In addition, we defined a novel quantity, "total constraint intensity,'' a proxy of multiple constraints (of co-regulated genes and tissues where the co-regulation occurs) on the evolution of genes in module context. We demonstrate that the evolutionary rate of a gene is negatively correlated with its total constraint intensity. Furthermore, there are modules coding the same essential biological processes, while their gene contents have diverged extensively between human and mouse. Conclusions: Our results suggest that unlike the composition of module, which exhibits a great difference between human and mouse, the functional organization of the corresponding modules may evolve in a more conservative manner. Most importantly, our findings imply that similar biological processes can be carried out by different sets of genes from human and mouse, therefore, the functional data of individual genes from mouse may not apply to human in certain occasions.
Resumo:
Spermiogenesis is a unique process in mammals during which haploid round spermatids mature into spermatozoa in the testis. Its successful completion is necessary for fertilization and its malfunction is an important cause of male infertility. Here, we report the high-confidence identification of 2116 proteins in mouse haploid germ cells undergoing spermiogenesis: 299 of these were testis-specific and 155 were novel. Analysis of these proteins showed many proteins possibly functioning in unique processes of spermiogenesis. Of the 84 proteins annotated to be involved in vesicle-related events, VAMP4 was shown to be important for acrosome biogenesis by in vivo knockdown experiments. Knockdown of VAMP4 caused defects of acrosomal vesicle fusion and significantly increased head abnormalities in spermatids from testis and sperm from the cauda epididymis. Analysis of chromosomal distribution of the haploid genes showed underrepresentation on the X chromosome and overrepresentation on chromosome 11, which were due to meiotic sex chromosome inactivation and expansion of testis-expressed gene families, respectively. Comparison with transcriptional data showed translational regulation during spermiogenesis. This characterization of proteins involved in spermiogenesis provides an inventory of proteins useful for understanding the mechanisms of male infertility and may provide candidates for drug targets for male contraception and male infertility.