143 resultados para hydrothermal stability
Resumo:
The novel hexagon SnO2 nanosheets are successfully synthesized in ethanol/water solution by hydrothermal process. The samples are characterized by X-ray diffraction (XRD), infrared ray (IR) and transmission electron microscopy (TEM). By changing the reaction conditions, the size and the morphology can be controlled. Comparison experiments show that when the temperature increased from 140 degrees C to 180 degrees C, the edge length of the hexagon nanoparticles increases from 300-450 nm to 700-900 nm. On the other hand, by adjusting the ratios of water to ethanol from 2 to 0.5, SnO2 nanoparticles with different morphologies of triangle and sphere are obtained. When the concentration of NaOH is increased from 0.15 M to 0.30 M, a hollow ring structure can be obtained. (c) 2006 Elsevier B.V. All rights reserved.
Stability and Synergistic Effect of Antioxidative Properties of Lycopene and Other Active Components
Resumo:
The intermittent illumination treatment by white light at elevated temperature is proved to be a convenient and efficient method for the improvement of the stability of hydrogenated amorphous silicon (a-Si:H) films. The effect of the treatment on electrical properties, light-induced degradation, and gap states of undoped a-Si:H films has been investigated in detail. With the increase of cycling number, the dark- as well as photo-conductivities in annealed state and light-soaked state approach each other, presenting an unique irreversible effect. The stabilization and ordering processes by the present treatment can not be achieved merely by annealing under the same conditions. It is shown that the treatment proposed here results in a shift to higher values of the energy barriers between defects and their precursors, and hence an improved stability of a-Si:H films. (C) 1996 American Institute of Physics.
Resumo:
Experimental study of the reverse annealing of the effective concentration of ionized space charges (N-eff, also called effective doping or impurity concentration) of neutron irradiated high resistivity silicon detectors fabricated on wafers with various thermal oxides has been conducted at room temperature (RT) and elevated temperature (ET). Various thermal oxidations with temperatures ranging from 975 degrees C to 1200 degrees C with and without trichlorethane (TCA), which result in different concentrations of oxygen and carbon impurities, have been used. It has been found that, the RT annealing of the N-eff is hindered initially (t < 42 days after the radiation) for detectors made on the oxides with high carbon concentrations, and there was no carbon effect on the long term (t > 42 days after the radiation) N-eff reverse annealing. No apparent effect of oxygen on the stability of N-eff has been observed at RT. At elevated temperature (80 degrees C), no significant difference in annealing behavior has been found for detectors fabricated on silicon wafers with various thermal oxides. It is apparent that for the initial stages (first and/or second) of N-eff reverse annealing, there may tie no dependence on the oxygen and carbon concentrations in the ranges studied.
Resumo:
High quality hydrogenated amorphous silicon (a-Si:H) films have been prepared by a simple "uninterrupted growth/annealing" plasma enhanced chemical vapor deposition (PECVD) technique, combined with a subtle boron-compensated doping. These a-Si:H films possess a high photosensitivity over 10(6), and exhibit no degradation in photoconductivity and a low light-induced defect density after prolonged illumination. The central idea is to control the growth conditions adjacent to the critical point of phase transition from amorphous to crystalline state, and yet to locate the Fermi level close to the midgap. Our results show that the improved stability and photosensitivity of a-Si:H films prepared by this method can be mainly attributed to the formation of a more robust network structure and reduction in the precursors density of light-induced metastable defects.
Resumo:
This paper gives a condition for the global stability of a continuous-time hopfield neural network when its activation function maybe not monotonically increasing.
Resumo:
The effects of annealing time and Si cap layer thickness: on the thermal stability of the Si/SiGe/Si heterostructures deposited by disilane and solid-Ge molecule beam epitaxy were investigated. It is found that in the same strain state of the SiGe layers the annealing time decreases with increasing Si cap layer thickness. This effect is analyzed by a force-balance theory and an equation has been obtained to characterize the relation between the annealing time and the Si cap layer thickness. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Gas source molecular beam epitaxy has been used to grow Si1-xGex alloys and Si1-xGex/Si multi-quantum wells (MQWs) on (100) Si substrates with Si2H6 and GeH4 as sources. Heterostructures and MQWs with mirror-like surface morphology, good crystalline qualify, and abrupt interfaces have been studied by a variety of in situ and ex situ techniques. The structural stability and strain relaxation in Si1-xGex/Si heterostructures have been investigated, and compared to that in the As ion-implanted Si1-xGex epilayers. The results show that the strain relaxation mechanism of the non-implanted Si1-xGex epilayers is different from that of the As ion-implanted Si1-xGex epilayers.
Resumo:
The effects of the carrier gas flow and water temperature on the oxidation rate for different reaction temperatures were investigated. The optimum conditions for stable oxidation were obtained. Two mechanisms of the oxidation process are revealed. One is the flow-controlling process, which is unstable. The other is the temperature-controlling process, which is stable. The stable region decreases for higher reaction temperatures. The simulation results for the stable oxidation region are also given. With optimum oxidation conditions, the stability and precision of the oxidation can be dramatically improved.
Resumo:
An electrical-to-green efficiency of more than 10% was demonstrated by intracavity-frequency-doubling a Q-switched diode-side-pumped Nd:YAG laser with a type II lithium triborate (LBO) crystal in a straight plano-concave cavity. An average power of 69.2 W at 532 nm was generated when electrical input power was 666 W. The corresponding electrical-to-green conversion efficiency is 10.4%. To the best of our knowledge, this is the highest electrical-to-green efficiency of second harmonic generation laser systems with side-pumped laser modules, ever reported. At about 66 W of green output power, the power fluctuation over 4 hours was better than +/-0.86%.