Global stability of Hopfield neural networks


Autoria(s): Li YJ
Data(s)

1998

Resumo

This paper gives a condition for the global stability of a continuous-time hopfield neural network when its activation function maybe not monotonically increasing.

This paper gives a condition for the global stability of a continuous-time hopfield neural network when its activation function maybe not monotonically increasing.

于2010-10-29批量导入

Made available in DSpace on 2010-10-29T06:37:12Z (GMT). No. of bitstreams: 1 2996.pdf: 87865 bytes, checksum: 71a314c0ff625310bbd5f7cfd3885fc1 (MD5) Previous issue date: 1998

Chinese Inst Electr.; Signal Proc Soc.; IEEE Signal Proc Soc.; Inst Elect Engineers.; Union Radio Sci Int.; IEEE Beijing Sect.; Natl Nat Sci Fdn China.; CIE Comm URSI.; IEEE Comp Soc Beijing Chapter.; IEEE SP Soc Beijing Chapter.

Chinese Acad Sci, Inst Semicond, Artificial Neural Network Lab, Beijing 100083, Peoples R China

Chinese Inst Electr.; Signal Proc Soc.; IEEE Signal Proc Soc.; Inst Elect Engineers.; Union Radio Sci Int.; IEEE Beijing Sect.; Natl Nat Sci Fdn China.; CIE Comm URSI.; IEEE Comp Soc Beijing Chapter.; IEEE SP Soc Beijing Chapter.

Identificador

http://ir.semi.ac.cn/handle/172111/13837

http://www.irgrid.ac.cn/handle/1471x/105100

Idioma(s)

英语

Publicador

IEEE

345 E 47TH ST, NEW YORK, NY 10017 USA

Fonte

Li YJ .Global stability of Hopfield neural networks .见:IEEE .ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II,345 E 47TH ST, NEW YORK, NY 10017 USA ,1998,1299-1300

Palavras-Chave #人工智能
Tipo

会议论文