836 resultados para GAAS-ALAS SUPERLATTICES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the characterization of thermally induced interdiffusion in InAs/GaAs quantum-dot superlattices with high-resolution x-ray diffraction and photoluminescence techniques. The dynamical theory is employed to simulate the measured x-ray diffraction rocking curves of the InAs/GaAs quantum-dot superlattices annealed at different temperatures. Excellent agreement between the experimental curves and the simulations is achieved when the composition, thickness, and stress variations caused by interdiffusion are taken in account. It is found that the significant In-Ga intermixing occurs even in the as-grown InAs/GaAs quantum dots. The diffusion coefficients at different temperatures are estimated. (C) 2000 American Institute of Physics. [S0003-6951(00)02440-2].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The optical properties of InAs quantum dots in n-i-p-i GaAs superlattices are investigated by photoluminescence (PL) characterization. We have observed an anomalously large blueshift of the PL peak and increase of the PL linewidth with increasing excitation intensity, much smaller PL intensity decrease, and faster PL peak redshift with increasing temperature as compared to conventional InAs quantum dots embedded in intrinsic GaAs barriers. The observed phenomena can all be attributed to the filling effects of the spatially separated photogenerated carriers. (C) 2000 American Institute of Physics. [S0003-6951(00)03515-4].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have made a normal incidence high infrared absorption efficiency AlAs/Al0.55Ga0.45As multiple-quantum-well structure grown on (211) GaAs substrates by molecular beam epitaxy (MBE). A strong infrared absorption signal at 11.6 mu m due to the transition of the ground state to the first excited state, and a small signal at 6.8 mu m due to the transition from the ground state to continuum. were observed. A 45 degrees tilted incidence measurement was also performed on the same sample for the comparison with a normal incidence measurement. Both measurements provide important information about the quantum well absorption efficiency. Efficiencies which evaluate the absorption of electric components perpendicular and parallel to the well plane are eta(perpendicular to) = 25% and eta(parallel to) = 88%, respectively. The total efficiency is then deduced to be eta = 91%. It is apparent that the efficiency eta(parallel to) dominates the total quantum efficiency eta Because an electron in the (211) AlAs well has a small effective mass (m(zx)* or m(zy)*), the normal incidence absorption coefficient is expected to be higher:than that grown on (511) and (311) substrates. Thus, in the present study, we use the (211) substrate to fabricate QWIP. The experimental results indicate the potential of these novel structures for use as normal incidence infrared photodetectors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of superlattices delta-GaNxAs1-x/GaAs were grown by a DC plasma-N-2-assisted molecular beam epitaxy. The evolution of the surface reconstruction during the growth has been studied with the use of in situ reflection high-energy electron diffraction. The superlattices have been characterized by high-resolution X-ray diffraction measurements. Distinct satellite peaks indicate that the superlattices are of good quality. The N compositions in strained GaNxAs1-x monolayers are obtained from the dynamical simulations of the measured X-ray diffraction patterns. The periodicity fluctuations of N composition are obtained from a kinematical method dependent on the broadening of the satellite peaks of the X-ray diffraction. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Radiative transition in delta-doped GaAs superlattices with a weak coupling was investigted at low temperature, The experimental results show that the transitions from both electron ground state and excited state to hole state have been observed, Based on the effective mass approximation theory, the structures of energy band and photoluminescence spectra for the samples used were calculated. Comparing the experiment with theory, a good agreement was abtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electronic structures of GaAs/Ga1-xAlxAs quantum wires (corrugated superlattices) grown on (311)-oriented substrates are studied in the framework of the effective-mass envelope-function method. The electron and hole subband structure and optical transition matrix elements are calculated. When x=1, the results are compared with experiments, and it is found that the direct transition becomes an indirect transition as the widths of well and barrier become smaller.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The lattice damage accumulation in GaAs and Al0.3Ga0.7As/GaAs superlattices by 1 MeV Si+ irradiation at room temperature and 350-degrees-C has been studied. For irradiations at 350-degrees-C, at lower doses the samples were almost defect-free after irradiation, while a large density of accumulated defects was induced at a higher dose. The critical dose above which the damage accumulation is more efficient is estimated to be 2 x 10(15) Si/cm2 for GaAs, and is 5 x 10(15) Si/cm2 for Al0.8Ga0.7As/GaAs superlattice for implantation with 1.0 MeV Si ions at 350-degrees-C. The damage accumulation rate for 1 MeV Si ion implantation in Al0.3Ga0.7As/GaAs superlattice is less than that in GaAs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have observed Wannier-Stark localization in strained In0.2Ga0.8As/GaAs superlattices by low- and room-temperature photocurrent spectra measurements. The experimental results are well in agreement with the theoretical predictions. A large field-induced modulation response of the absorption edge of the superlattices at room temperature suggests the possibilities of the application to the design of various kinds of electro-optical devices operating at a wavelength of 0.98 mum, based on Wannier-Stark localization effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With a low strained InxGa1-xAs/GaAs(x similar to 0.01) superlattice (SL) buffer layer, the crystal quality of 50 period relaxed In0.3Ga0.7As/GaAs strained SLs has been greatly improved and over 13 satellite peaks are observed from X-ray double-crystal diffraction, compared with three peaks in the sample without the buffer layer. Cross-section transmission electron microscopy reveals that the dislocations due to superlattice strain relaxation are blocked by the SLs itself and are buried into the buffer layer. The role of the SL buffer layer lies in that the number of the dislocations is reduced in two ways: (1) the island formation is avoided and (2) the initial nucleation of the threading dislocations is retarded by the high-quality growth of the SL buffer layer. When the dislocation pinning becomes weak as a result of the reduced dislocation density, the SLs can effectively move the threading dislocations to the edge of the wafer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polaron cyclotron resonance (CR) has been studied in three modulation-doped GaAs/Al0.3Ga0.7As multiple quantum well structures in magnetic field up to 30 T. Large avoided-level-crossing splittings of the CR near the GaAs reststrahlen region, and smaller splittings in the region of the AlAs-like optical phonons of th AlGaAs barriers, are observed. Based on a comparison with a detailed theoretical calculation, the high frequency splitting, the magnitude of which increases with decreasing well width, is assigned to resonant polaron interactions with AlAs-like interface phonons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we investigate the structural properties of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of x-ray diffraction, reciprocal-space mapping, and x-ray reflectivity. The multilayers were grown by metalorganic vapor-phase epitaxy on (001) GaAs substrates intentionally off-oriented towards one of the nearest [110] directions. High-resolution triple-crystal reciprocal-space maps recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction clearly show a double periodicity of the x-ray peak intensity that can be ascribed to a lateral and a vertical periodicity occurring parallel and perpendicular to the growth surface. Moreover, from the intensity modulation of the satellite peaks, a lateral-strain gradient within the epilayer unit cell is found, varying from a tensile to a compressive strain. Thus, the substrate off-orientation promotes a lateral modulation of the layer thickness (ordered interface roughness) and of the lattice strain, giving rise to laterally ordered macrosteps. In this respect, contour maps of the specular reflected beam in the vicinity of the (000) reciprocal lattice point were recorded in order to inspect the vertical and lateral interface roughness correlation, A semiquantitative analysis of our results shows that the interface morphology and roughness is greatly influenced by the off-orientation angle and the lateral strain distribution. Two mean spatial wavelengths can be determined, one corresponding exactly to the macrostep periodicity and the other indicating a further interface waviness along the macrosteps. The same spatial periodicities were found on the surface by atomic-force-microscopy images confirming the x-ray results and revealing a strong vertical correlation of the interfaces up to the outer surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Radiative transition in delta-doped GaAs superlattices with and without Al0.1Ga0.9As barriers is investigated by using photoluminescence at low temperatures. The experimental results show that the transition mechanism of delta-doped superlattices is very different from that of ordinary superlattices. Emission intensity of the transition from the electron first excited state to hole states is obviously stronger than that from the electron ground state to hole states due to larger overlap integral between wavefunctions of electrons in the first excited state and hole states. Based on the effective mass theory we have calculated the self-consistent potentials, optical transition matrix elements and photoluminescence spectra for two different samples. By using this model we can explain the main optical characteristics measured. Moreover, after taking into account the bandgap renormalization energy, good agreement between experiment and theory is obtained.