239 resultados para CARBIDE NANORODS
Resumo:
Microtwins in the 3C-SiC films grown on Si(001) by APCVD were analyzed in detail using an X-ray four-circle diffractometer. The empty set scan shows that 3C-SiC films can grow on Si substrates epitaxially and the epitaxial relationship is revealed as (001)(3C-SiC)//(001)(Si), [111](3C-SiC)//[111](Si). Other diffractions emerged in the pole figures of the (111) 3C-SiC. We performed the (10 (1) over bar0) h-SiC and the reciprocal space mapping of the (002) plane of twins for the first time, finding that the diffractions at chi = 15.8 degrees result from not hexagonal SiC but microtwins of 3C-SiC, and twin inclusions are estimated to be 1%.
Resumo:
The in-situ p-type doping of 4H-SiC grown on off-oriented (0001) 4H-SiC substrates was performed with trimethylaluminum (TMA) and/or diborane (B2H6) as the dopants. The incorporations of Al and B atoms and their memory effects and the electrical properties of p-type 4H-SiC epilayers were characterized by secondary ion mass spectroscopy (SIMS) and Hall effect measurements, respectively. Both Al- and B-doped 4H-SiC epilayers were p-type conduction. It was shown that the profiles of the incorporated boron and aluminum concentration were in agreement with the designed TMA and B2H6 flow rate diagrams. The maximum hole concentration for the Al doped 4H-SiC was 3.52x10(20) cm(-3) with Hall mobility of about 1 cm(2)/Vs and resistivity of 1.6 similar to 2.2x10(-2) Omega cm. The heavily boron-doped 4H-SiC samples were also obtained with B2H6 gas flow rate of 5 sccm, yielding values of 0.328 Omega cm for resistivity, 5.3x10(18) cm(-3) for hole carrier concentration, and 7 cm(2)/VS for hole mobility. The doping efficiency of Al in SiC is larger than that of B. The memory effects of Al and B were investigated in undoped 4H-SiC by using SIMS measurement after a few run of doped 4H-SiC growth. It was clearly shown that the memory effect of Al is stronger than that of B. It is suggested that p-type 4H-SiC growth should be carried out in a separate reactor, especially for Al doping, in order to avoid the join contamination on the subsequent n-type growth. 4H-SiC PiN diodes were fabricated by using heavily B doped epilayers. Preliminary results of PiN diodes with blocking voltage of 300 V and forward voltage drop of 3.0 V were obtained.
Resumo:
Using AlN as a buffer layer, 3C-SiC film has been grown on Si substrate by low pressure chemical vapor deposition (LPCVD). Firstly growth of AlN thin films on Si substrates under varied V/III ratios at 1100 degrees was investigated and the (002) preferred orientational growth with good crystallinity was obtained at the V/III ratio of 10000. Annealing at 1300 degrees C indicated the surface morphology and crystallinity stability of AlN film. Secondly the 3C-SiC film was grown on Si substrate with AlN buffer layer. Compared to that without AlN buffer layer, the crystal quality of the 3C-SiC film was improved on the AlN/Si substrate, characterized by X-ray diffraction (XRD) and Raman measurements.
Resumo:
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get high quality 4H-SiC epilayers. Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates purchased from Cree is performed at a typical temperature of 1500 degrees C with a pressure of 40 Torr by using SiH4+C2H4+H-2 gas system. The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope, atomic force microscopy (AFM), x-ray diffraction, Raman scattering, and low temperature photoluminescence (LTPL). The background doping of 32 pm-thick sample has been reduced to 2-5 x 10(15) cm(-3). The FWHM of the rocking curve is 9-16 arcsec. Intentional N-doped and B-doped 4H-SiC epilayers are obtained by in-situ doping of NH3 and B2H6, respectively. Schottky barrier diodes with reverse blocking voltage of over 1000 V are achieved preliminarily.
Resumo:
Homoepitaxial growth of 4H-SiC p(+)/pi/n(-) multi-epilayer on n(+) substrate and in-situ doping of p(+) and pi-epilayer have been achieved in the LPCVD system with SiH4+C2H4+H-2. The surface morphologies, homogeneities and doping concentrations of the n(-)-single-epilayers and the p(+)/pi/n(-) multi-epilayers were investigated by Nomarski, AFM, Raman and SIMS, respectively. AFM and Raman investigation showed that both single- and,multi-epilayers have good surface morphologies and homogeneities, and the SIMS analyses indicated the boron concentration in p+ layer was at least 100 times higher than that in pi layer. The UV photodetectors fabricated on 4H-SiC p(+)/pi/n(-) multi-epilayers showed low dark current and high detectivity in the UV range.
Resumo:
3C-SiC is a promising material for the development of microelectromechanical systems (MEMS) applications in harsh environments. This paper presents the LPCVD growth of heavily nitrogen doped polycrystalline 3C-SiC films on Si wafers with 2.0 mu m-thick silicon dioxide (SiO2) films for resonator applications. The growth has been performed via chemical vapor deposition using SiH4 and C2H4 precursor gases with carrier gas of H-2 in a newly developed vertical CVD chamber. NH3 was used as n-type dopant. 3C-SiC films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and room temperature Hall Effect measurements. It was shown that there is no voids at the interface between 3C-SiC and SiO2. Undoped 3C-SiC films show n-type conduction with resisitivity, Hall mobility, and carrier concentration at room temperature of about 0.56 Omega center dot cm, 54 cm(2)/Vs, and 2.0x 10(17) cm(-3), respectively. The heavily nitrogen doped polycrystalline 3C-SiC with the resisitivity of less than 10(-3) Omega center dot cm was obtained by in-situ doping. Polycrystalline SiC resonators have been fabricated preliminarily on these heavily doped SiC films with thickness of about 2 mu m. Resonant frequency of 49.1 KHz was obtained under atmospheric pressure.
Resumo:
Three types of defects, namely defect I, defect 11, defect 111, in the 4H-SiC homoepilayer were investigated by micro-raman scattering measurement. These defects all originate from a certain core and are composed of (1) a wavy tail region, (11) two long tails, the so called comet and (111) three plaits. It was found that there are 3C-SiC inclusions in the cores of defect 11 and defect III and the shape of inclusion determines the type of defect II or defect III. If the core contains a triangle-shaped inclusion, the defect III would be formed; otherwise, the defect 11 was formed. No inclusion was observed in the core of the defect I. The mechanisms of these defects are discussed.
Resumo:
A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 A) gold film was evaporated on the half area of the aSiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 degrees C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.
Resumo:
Direct ion beam deposition of carbon films on silicon in the ion energy range of 15-500 eV and temperature range of 25-800-degrees-C has been studied. The work was carried out using mass-separated C+ and CH3+ ions under ultrahigh vacuum. The films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and transmission electron diffraction analysis. In the initial stage of the deposition, carbon implanted into silicon induced the formation of silicon carbide, even at room temperature. Further carbon ion bombardment then led to the formation of a carbon film. The film properties were sensitive to the deposition temperature but not to the ion energy. Films deposited at room temperature consisted mainly of amorphous carbon. Deposition at a higher temperature, or post-deposition annealing, led to the formation of microcrystalline graphite. A deposition temperature above 800-degrees-C favored the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation in these films was observed.
Resumo:
ZnO nanorod arrays with different morphologies were grown by metalorganic chemical vapor deposition (MOCVD). The diameters of nanorods range from 150 nm to 20 nm through changing the carrier gas flux during the growth process. Measurements such as scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and photoluminescence (pL) spectrum were employed to analyze the differences of these nanorods. It was found that when both carrier gas flux of Zn and O reactant are 1 SLM, we can obtain the best vertically aligned and uniform nanorods. Furthermore, the PL spectrum reveals a blueshift of UV emission peak, which may be assigned to the increase of surface effect.
Resumo:
Silicon carbide (SiC) is recently receiving increased attention due to its unique electrical and thermal properties. It has been regarded as the most appropriate semiconductor material for high power, high frequency, high temperature, and radiation hard microelectronic devices. The fabrication processes and characterization of basic device on 6H-SiC were systematically studied. The main works are summarized as follows:The homoepitaxial growth on the commercially available single-crystal 6H-SiC wafers was performed in a modified gas source molecular beam epitaxy system. The mesa structured p(+)n junction diodes on the material were fabricated and characterized. The diodes showed a high breakdown voltage of 800 V at room temperature. They operated with good rectification characteristics from room temperature to 673 K.Using thermal evaporation, Ti/6H-SiC Schottky barrier diodes were fabricated. They showed good rectification characteristics from room temperature to 473 K. Using neon implantation to form the edge termination, the breakdown voltage was improved to be 800 V.n-Type 6H-SiC MOS capacitors were fabricated and characterized. Under the same growing conditions, the quality of polysilicon gate capacitors was better than Al. In addition, SiC MOS capacitors had good tolerance to gamma rays. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The heteroepitaxial growth of n-type and p-type 3C-SiC on (0001) sapphire substrates has been performed with a supply of SiH4+C2H4+H-2 system by introducing ammonia (NH3) and diborane (B2H6) precursors, respectively, into gas mixtures. Intentionally incorporated nitrogen impurity levels were affected by changing the Si/C ratio within the growth reactor. As an acceptor, boron can be added uniformly into the growing 3C-SiC epilayers. Nitrogen-doped 3C-SiC epilayers were n-type conduction, and boron-doped epilayers were p-type and probably heavily compensated.