319 resultados para 90-25-PC1
Resumo:
本论文利用溶胶一凝胶法和水热法制备了不同离子(Eu~3+,Sm~3+,Mn~2+,Fe~3+,Co~2+,Ni~2+)作为磁性杂质的ZnO基稀磁半导体,并系统地研究了材料的薄膜、粉末和纳米结构的结晶特性、结构形态和光、电、磁性质。溶胶一凝胶法制备的薄膜的晶体为c轴取向生长的六方纤维锌矿结构。薄膜的取向生长受烧结气氛、烧结温度和掺杂离子浓度的影响,其中烧结气氛是影响薄膜取向生长的最直接、最显著因素。随着烧结气氛中氧含量的减小,薄膜的沿c轴生长的趋势加强。此外,烧结温度的提高也增强薄膜沿c轴生长的趋势,但掺杂离子浓度的增加却抑制薄膜的c轴取向生长特性。通过薄膜表面形态的研究发现,在空气中烧结的薄膜由立方晶粒构成,而在真空中烧结的样品则由不规则的片状晶粒组成。组成薄膜的多晶颗粒粒径小于10Onm,15层薄膜的膜厚为357-366nm。掺杂离子在薄膜中均匀分布,成膜过程不改变掺杂离子(Eu3+,Sm3+,Mn2+,Fe3+,Co2+,Ni2+)和基质离子(Zn2+和O2-)的价态。 不同Eu3+掺杂浓度的ZnO薄膜样品的吸收光谱的吸收边出现在363nm和368nm之间,对应半导体材料的禁带宽度Eg=3.42~3.40ev。由于Eu3+改变了薄膜的表面性质,Zn1-xEux(0.005≤x≤0.15)薄膜在可见光区出现了一系列干涉带。Zn1-xTMxO薄膜的吸收光谱的吸收边位置出现在356nm-369nm,对应半导体的禁带宽度为3.34-3.46eV,在可见光区发现了Co2+的电子的d-d跃迁引起的吸收带。随着掺杂浓度的增加,薄膜的透光率逐渐减小。Zn1-xCoxO薄膜在近紫外与可见光区的透光率都在60%以上,Zn1-xEuxO薄膜的透光率则高达90%。在Zn1-xEuxO薄膜的激发发射光谱中,以613nm作为监控波长,激发光谱除了检测到Eu3+的7F→5D能级的吸收跃迁外,还检测到最大值位于378nm附近的ZnO的吸收带。以394nm为激发波长,发射光谱检测到Eu3+的5D0→7FJ(J=1,2,3,4)跃迁。以zno的带隙能量378nm作为激发波长进行激发,检测到Eu3+的5D0→7F2跃迁,说明基质zno和E矿十之间存在能量交换。薄膜磁性测试在4-400K温度范围内进行,发现在此温度范围内Zn0.9Eu0.1O薄膜表现居里一外斯顺磁性;在低温区,存在磁性增强现象。zno.gCoo.IO薄膜在23oK以下表现为铁磁性,200K的M-H曲线显示薄膜的剩磁(Br)约为0.21em侧g,矫顽力(Hc)约为327Oe。但Zn0.9Mn0.1O,Zn0.9Ni0.1O,Zn0.9Co0.1O薄膜的磁性测试则显示在80K以上三种薄膜均表现为顺磁性。Zn0.9Eu0.1O薄膜的电阻呈现典型的半导体性质,在ZT的磁场下,薄膜在110K获得最大14.53%的磁阻率。Zn1-xTMxO薄膜的电阻也表现典型的半导体特性,实验研究了薄膜在不同掺杂离子浓度、外加磁场以及温度条件下的磁阻性质。粉末样品中磁性离子的掺杂浓度均小于薄膜样品。Co,Fe,Ni,Mn掺杂的Zn1-xTMxO粉末在80以上均为顺磁性。在Co2+掺杂的粉末样品中没有发现类似于薄膜样品的铁磁性,说明DMS的磁性与制备条件关系密切。实验证明了利用sol-gel方法,Zno:TM稀磁半导体能够有效地组装在MCM-41和AAO的孔道内。ZnO:TM材料组装进在MCM-41孔道后,不改变孔道的六方结构但使孔径变小。随着组装次数的增加,MCM-41的孔径和孔容累进减小。组装在AAo模板孔道内的材料呈单分散纳米颗粒状态,颗粒粒径小于loonm。组装材料的磁性测试显示:组装在MCM-41内的Zn0.9Co0.1O材料在80K-30OK呈现超顺磁性。而Mn,Fe,Ni掺杂的Zno在此温度范围内表现顺磁性。组装在AAO内的ZnO:TM(TM=Mn,Fe,Co,Ni)材料在SOK-30OK温度范围内都呈现顺磁性。在水热法合成ZnO:A(A=Bu,Sm,co)纳米粒子的过程中,发现反应温度、压力、时间和溶液浓度等因素只影响Znl.xCoxO纳米粒子的的产量,而溶液的酸度却影响产物的形貌。控制溶液的酸度,可以控制产物的形貌从粒状向棒状转变。当溶液的PH=5时,在甲醇:水体系中可以水热合成规则的棒状ZnO:RE(RE=Eu,Sm)纳米晶。所得到的Zn0.98Co0.02O纳米晶在80K呈超顺磁行为,而ZnO:RE(RE=Eu,Sm)纳米晶在80K则表现较弱的顺磁性。 实验通过控制水热条件,制备了一种新型结构的柠檬酸锌晶体。由于利用了水热反应的非平衡合成条件,所得到的晶体的层状结构不同于目前已知的所有柠檬酸配合物的离散型分子结构。单晶衍射结果表明:化合物是一个由八面体和一个非对称单元交替相连构成的二维层状结构。
Resumo:
本论文合成、表征了一系列改性单茂钦配合物,研究了这些配合物催化苯乙烯间规聚合反应行为。主要工作和结论如下:1.合成、表征了一系列双酚(胺)氧基五甲基单茂钦氯化物。在改性甲基铝氧烷(MMAO)的活化下,这些配合物可高效地催化苯乙烯间规聚合,在较高的聚合温度时(70-90℃),催化活性接近或超过五甲基氯化单茂钦的活性,在较低的铝钦比时(500/1),催化活性远远高于五甲基氯化单茂钦的活性。2.合成、表征了一系列新型单乙醇苯胺五甲基单茂钦氯化物。在MMAO的活化下,这类配合物是苯乙烯间规聚合的高效催化剂,催化活性高于母体配合物五甲基单茂钦氯化物,在较高的聚合温度和较低的铝钦比时,体现出优异的催化性能。这类配合物的催化活性随着配体的空间位阻的增大而逐渐升高。3.合成、表征了一系列新型双乙醇苯胺五甲基单茂钦氯化物。在MMAO的活化下,可以高效催化苯乙烯间规聚合,催化活性高于母体配合物五甲基单茂钦和相应的单乙醇苯胺配合物,尤其在较高的聚合温度和较低的铝钦比时,更加体现出优于母体配合物的催化性能。这类配合物的催化活性随着配体的空间位阻的增大而逐渐升高。4.合成、表征了一系列新型含曼尼希碱类配体的五甲基单茂钦氯化物。在MMAO的活化下,可高效催化苯乙烯间规聚合,催化活性远远高于母体配合物五甲基单茂钦氯化物,尤其在较高的聚合温度和较低的铝钦比时,更加体现出优于母体配合物的催化性能。这类配合物的催化活性随着配体的空间位阻的增大而逐渐升高。5.合成、表征了一种新型的多核单茂钦配合物。在MMAO的活化下,这类钦配合物可催化苯乙烯间规聚合,在优化条件下,催化活性可以达到五甲基氯化单茂钦活性的三倍,尤其在较高的聚合温度和较低的铝钦比时,更加体现出优于母体配合物的催化性能。随着中心金属原子个数的增多,催化所需的MMAO的用量逐渐减少。
Resumo:
合成了一系列氯含量不同的氯化丁羟(氯含量为5%~68%)。利用红外光谱、核磁共振观察了氯含量不同的氯化丁羟的双键变化。通过氯含量-5反应时间的关系及上述观察结果表明;丁羟在四氯化碳中进行氯化,首先进行加成反应,待双键饱和后,进行取代反应。用红外光谱观察了丁羟在氯化反应中三种微观结构的变化,观察了氯化高顺式聚丁二烯的双键变化,对氯化丁羟的赤苏异构体的碳-氯键红外光密度比值,进行了分析。这些观察和分析说明;丁羟在四氯化碳中氯化,存在着顺-反异构化反应。较详细地研究了影响交联反应的主要因素,利用低聚物的特点,通过数均分子量和粘度表征了交联反应程度。从而观察到,交联反应伴随着氯化反应之中,交联程度随着反应液中羟浓度的提高,随着反应时间的延长而增大。在一定反应液浓度下交联程度可以减小到很低程度,得到完全可溶的氯化丁羟。反应温度对交联反应在20~76℃范围无显著影响。提出了以氯乙醇为调节剂合成液体氯化丁羟的方法。实验结果说明,氯乙醇比文献中得到的乙醇在抑制交联反应,提高氯含量方面效果更好。氯化丁羟的羟值分析结果表明,丁羟的羟值在氯化反应中没有损失。这对氯化丁羟作为遥瓜型低聚物应用,在进行固化反应时,是非常重要的。随着溶剂介电常数的提高,出现凝胶的极限浓度也提高。根据这一实验和上述各项实验结果,基于烯类化合物氯化反应的一些基础研究工作。我们认为,在丁羟的氯化反应中,存在着两种反应机理;离子机理的加成,导致可溶氯化产物,自由基机理除加成外,导致交联,顺-反异构化反应。II 氯化丁羟与TDI的反应为二级反应。DBTDL(二月桂酸二丁基锡)对本固化反应有明显的催化效果。在100 ℃,以DBTDL为催化剂的固化反应中,氯化丁羟与TDI的反应速度常数为11.9 * 10~(-3)(升/克分子·秒),这个反应活化能为5.5千卡/克分子。合成了一系列的氯化丁羟聚氨酯。红外光谱测试结果表明,NH基分为两个红外吸收峰;3440 cm~(-1), 3310 cm~(-1)。高波频峰的为游离的NH基,低波频峰为缔合的NH基,其缔合度为88%。同时,表征了氯化丁羟聚氨酯的主要红外光谱吸收峰。研究了氯化丁羟聚氨酯的形态结构。透射电子微显镜示出氯化丁羟聚氨酯的微相分离区域结构,其硬段区域结构的尺寸大约趋于在0.7~1.6μ范围内(硬段含量30%)。差热分析和示差扫描量热分析结果一致表明,氯化丁羟聚氨酯在60 ℃-90 ℃范围内有一宽而弱的吸热转变区,在115 ℃左右有一吸热峰,它们归因于硬段区域结构的热转变。宽角X光衍射实验没有观察到明显的结晶吸收峰的存在。这个实验结果主要与氯化丁羟聚氨酯的无规、侧基及不对称的结构特点有关。初步实验结果显示出,氯化丁羟聚氨酯具有优异的粘结性能,其抗剪强度约是丁羟聚氨酯的六倍。通过氧化锌的作用,可以提高氯化丁羟聚氨酯的抗张强度。因为粘结强度是水轮机耐磨耐汽蚀涂层研制中比较关键的因素,所以,这个实验结果是很有意义的。
Resumo:
聚合物的结构决定了它的分子链的运动,分子链的运动又可表征聚合物的结构,而且聚合物的宏观性质又受到它的微观运动的影响。因此有目的地开发各种聚合物材料,充分利用其独特的性质,都离不开研究它的微观运动。这就是结构-性能-运动的关系。1,2-聚丁二烯作为一种弹性体,近十几年研究得较多,主要局限在它的链节结构(1,2-链节)与其物理机械性能的关系方面,其目的是为了弥补顺丁橡胶的不足。对于1,2-链节与其分子链的微观运动则研究得较少。然而这方面的研究对于1,2-聚丁二烯弹性体的开发和应用无疑是有益的。研究1,2-聚丁二烯的链节结构与其分子链的相互作用,首先需要选择适当的表征分子链的各种相互作用的参数。聚合物分子链的长程运动,可分为分子链内旋转运动和分子链间相互作用。其中分子链间相互作用通常用聚合物的内聚能密度表示,分子链内旋转运动决定分子链的柔顺性,而它们二者共同影响聚合物的玻璃化温度。因此实验中首先测定1,2-聚丁二烯的玻璃化温度和内聚能密度,从研究1,2-链节与1,2-聚丁二烯分子链的忌的相互作用和分子链间的相互作用着手。实验需要的1,2-聚丁二烯样品部分是用丁基锂制备的,也有别人提供的钼体系和铁体系的样品。样品的1,2-链节含量从8%至90%。主要用线膨胀法(还有DSC法及扭摆法)测定了1,2-聚丁二烯的玻璃化温度。不仅发现了1,2-聚丁二烯的玻璃化温度随1,2-链节增多而提高,而且得到了它们在玻璃化转变时的体积膨胀系数。这个系数对于后面研究分子链柔顺性是有用的。聚合物的内聚能密度是其溶解度参数的平方。实验选用特性粘数法测定1,2-聚丁二烯的溶解度参数,其中关键在于选择适当的溶剂。这方面失败的教训是由于所用的溶剂在化学结构和极性上与聚合物的相差甚大。由于这种限制,测定1,2-聚丁二烯的溶解度参数时,难以找到化学结构和极性合适且溶解度参数又相当的纯溶剂。因此按照溶解度参数理论,配制了不同溶解度参数的环已焓一甲苯混合溶剂,代替部分纯溶剂。测定结果表明,1,2-链节含量为16%的样品,其溶解度参数为8.6([卡/立方厘米]~(1/2)),其余含量较高的样品,都是8.5([卡/立方厘米]~(1/2))。用混合溶剂测定聚合物的溶解度参数还是第一资,其可靠性取决于混合溶剂的溶解度参数的准确性。根据溶解度参数理论,我们提出克分子体积相近,且无特殊的相互作用的二元混合溶剂的溶解度参数,等于它们各自的溶解度参数按体积分数的加合。环已烷和甲苯的克分子体积分别为108.7和106.8立方厘米,它们的溶解度参数的极性分量S_极 → 0,再假定混合时没有吸热效应,它们二者按体积分数加合的溶解度参数可以定量使用。用时还从三个方面进行了验证,(1)用克分子体积相差较大(分别为147.4和89.4立方厘米)的正庚焓-苯混合溶剂作为反证;(2)根据特性粘数理论,用Matsuo方程;(3)由三元(溶剂1-溶剂2-聚合物)体系的Flory-Huggins相互作用参数等,它们都证实了上面提出的混合溶剂测定1,2-聚丁二烯溶解度参数的条件。根据前面的实验结果发现,1,2-链节与1,2-聚丁二烯的玻璃化温度有关,与其内聚能密度基本无关。建么1,2-链节必定与其分子链柔顺性有关。为了更准确地说明1,2-链节对1,2-聚丁二烯分子链柔顺性的影响,需要选择表征分子链柔顺性的参数。聚合物的分子链中相互作用的直观表现是它的分子链柔顺性,而分子链的柔顺性起因于它的链状分子和分子链的内旋转运动。因此我们选用分子链内旋转的参数(内旋转势垒和内旋转异构化能)表征1,2-聚丁二烯分子链的柔顺性。目前文献报道的计算分子链内旋转异构化能的方法,大多数是根据Gibbs-DiMarzio的玻璃化转变理论。这些方法一般都比较复杂。我们提出从聚合物发生玻璃化转变时的温度和体积膨胀系数,计算分子链内旋转异构化能的简便方法。这个方法的基本出发点是认为聚合物发生玻璃化转变时的自由体积,对不同结构的聚合物并非常数,其原因在于玻璃化转变时的聚合物体积膨胀系数部分地来自于分子链构象变化的贡献。分子链内旋转引起构象变化时,分子链的内旋转异构化能也相应地变化。因此玻璃化转变时,分子链的构象变化既对聚合物的体积膨胀系数有影响,又与分子链内旋转异构化能有联系,那么此时的聚合物的体积膨胀系数,与单个分子链的内旋转异构化能必然有某种联系。若用Δα·Tg(Δα是随态和玻璃态的体积膨胀系数)表示玻璃化温度Tg下,单个分子链处于能量状态∈的几率,Ng表示相同温度下,分子链中处于相同能量状态中的柔顺链分数,按照统计力学原理得到∈=-K·TgLn((Δα·Tg)/(1-Δα·Tg))。(1)
Resumo:
本工作研究了以三氯化铁为主催化剂,三异丁基铝为助催化剂,吡啶、苯胺、丙烯腈、乙二胺、四甲基乙二胺、2,2'-联比啶和邻啡啰啉等含氮化合物为配位体的催化体系聚合丁二烯。发现邻啡啰啉做配位体时,该体系有很高的催化活性,Fe/BD为3.0 * 10~(-5),Al/BD为2.0 * 10~(-3)时,聚合物收率可达90%以上。认为能与活性中心形成五圆或六圆螯合环的共轭含氮化合物做配位体,对聚合活性有非常显著的提高。而且共轭的程度愈高,活性愈高。故乙二胺、四甲基乙二胺、2,2'-联吡啶及邻啡啰啉虽然都能够与Fe形成五圆螯合物,但活性不一样:并用分子轨道理论进行了讨论。本文详细地研究了FeCl_3-Al(i-C_4H_9)_3-phen体系催化丁二烯聚合,考察了phen、Al(i-C_4H_9)_3的用量及聚合温度对催化活性、聚合物特性粘数及微观结构的影响。加入phen得到中乙烯基PBD(1,2-结构为40%-60%),而不加入phen则得到顺式1,4-结构较高的PBD(顺式-1,4结构为74.4%)。该体系得到的PBD的特性粘数一般大于10,难以加工,故进行了分子量调节的尝试。体系中加入氯化正丁烷、溴代正丙烷、碘甲烷等卤代烷及三氯乙烯、氯代苯等卤代烃,均不能使PBD的分子量降低,而且用量较大时基本不影响聚合反应。卤代丙烯及氯代苄均可以降低PBD的分子量,其中氯丙烯的分子量调节效果最佳。若用量合适,可以使PBD的特性粘数从10以上降到4以下,而基本上不影响聚合物收率。PBD的分子量分布较窄,分布宽度指数为2.0左右,不随氯丙烯的用量而改变。从实验结果讨论了FeCl_3-AlCi-C_4H_9)_3-phen体系催化丁二烯聚合的机理及分子量调节剂的链传移机理。认为该体系催化丁二烯聚合的活性中心为:链转移是通过分子量调节剂对活性中心的氧化加成-还原消除反应进行的。在phen存在下,FeCl_3、Fe(acac)_3等与烷基铝作用,及(phen)_2FeCl_2与烷基铝作用,均可以生成烷基铁络合物:但只分离出(C_2H_5)_2Fe(phen)_2。(i_C_4H_9)_2(phen)_2及由氯化铁和(phen)_2FeCl_2合成的烷基铁络合物还未得到纯的产物,但从反应产物的易氧化性、水解产物的分析及红外光谱,证实产物中存在烷基铁。用元素分析、红外光谱、远红外光谱及气相色谱分析表征了(C_2H_5)_2Fe(phen)_2的结构。(C_2H_5)_2Fe(phen)_2单独使用不能使丁二烯聚合,需加少量的烷基铝,与其中一个配位体络合,使活性中心有供丁二烯配位的空轨道,聚合反应才能顺利进行:得到的PBD特性粘数为1.8~2.4左右,1,2-结构为40-60%,顺式-1,4结构为53~41%,反式-1,4结构很少。初步证明所提出的铁体系催化丁二烯聚合的机理基本上是正确的。初步表征了铁体系聚丁二烯硫化胶的性能,其抗张强度为203~205公斤/厘米~2,300%定伸强度为70~125公斤/厘米~2,伸长离为453~573%。
Resumo:
表征硫化橡胶弹性体网络的主要结构参数是有效网链密度橡胶弹性体的许多重要力学性能,例如:300%定伸强度、抗张强度、伸长率、抗撕裂、弹性、硬度、静态压缩模量和动态模量等都是和有效网链密度紧密相关的。Flory用平衡溶胀法测定有效网链密度的方程是:Ve = -1/(V_s)·(l_n(1-υ_r) + υ_r + μυ_r~2)/(υ_r~(1/3)-2υ_r/f)式中的Ve是有效网链密度(用单位体积橡胶的有效网链克分子数来表示),υ_r是溶胀网络中橡胶的体积分数,υ_s是溶剂的克分子体积,f是交联点的官能度(f = 4),μ是高聚物溶剂相互作用参数。首先要确定μ才能够用上式来测定硫化胶的有效网链密度以表征硫化程度。实验事实和Flory等人的理论工作表明:μ不是常数,是υ_r的函数。高顺式聚丁二烯橡胶已生产多年,但迄今未有关于高顺式聚丁二烯橡胶在不同溶剂中的μ和υ_r间的函数关系的报导。在实际应用中,人们常常用υ_r值的大小来近似表征硫化程度。但由上式可知:μ和υ_r不成正比关系。因此,必须求得μ值,才能得到Ve值,以正确表征硫化程度,对实际生产起指导作用。本工作采用溶胀-拉伸方法不渗透压,光散射等方法测定顺丁橡胶和溶剂甲苯、苯、正-庚烷的相互作用参数μ,得到了μ和υ_r的线性函数(见附表),μ = μ_o + βυ_r。μ_o是当υ_r趋向于零时的μ值,β是一个常数。溶胀拉伸法外推得到的μ_o值和用渗透压及光散射法得到的μ_o值么接近,为实验的可靠性提供了依据。力学方法和物理化学方法同时测得相近的结果,有文献报导的不多。用溶胀-拉伸法求橡胶-溶剂的相互作用参数μ,由于样品的制作和实验技术上的困难内尚未见报导。国外Kraus和V. Zanboni等人用天然、丁苯、乙丙、丁腈等纯胶硫化胶(未加碳黑的硫化胶)进行溶胀-拉伸实验,测定μ和U_r的函数关系。然后用来计算碳黑硫化胶的μ和Ve。本工作表明:对于同一橡胶-溶剂体系来说,纯胶硫化胶和碳黑硫化胶的μ和υ_r的函数关系并不一样,在相同υ_r时,二者Ve相差2.5-5%,υ_r值越大,Ve相差越大。因此用纯胶硫化胶的μ和υ_r的函数来计算碳黑硫化胶的有效网链密度是不适当的。本工作还用渗透压法测定了1,2-聚丁二烯(1,2-含量分别为90%和60%)及合成异戊橡胶和溶剂甲苯的相互作用参数μ_o。结果表明:合成异戊橡胶和天然橡胶有相同的μ_o值。这说明μ_o值只和化学结构有关,与样品的来源无关。两种1,2-聚丁二烯橡胶和顺丁橡胶也有相接近的μ_o值。其原因是因为三者有基本相同的内聚能密度,则它们在同一种溶剂中所受到的作用力应当相等的缘故。最后,本工作还研究了顺丁橡胶的有效网链密度对300%定伸强度、抗张强度、抗撕裂、伸长率、弹性、硬度、静态压缩模量和动态模量等力学性能的影响。结果表明:有效网链密度Ve和300%定伸强度成直线函数关系:M_(300%) = 17 + 3.61 * 10~5 * Ve(公斤/厘米)。这就为测定硫化胶的有效网链密度提供了另一条途径,因为300%定伸强度是表征硫化胶的一个重要参数,实验简单易行,知道了M_(300%)就可以利用上式估算Ve。本工作发现有效网链密度在2.00~3.10 * 10~(-4)摩尔/厘米~3的范围内,则可望达到优秀的抗张强度和抗撕裂性能,对实际生产的工艺控制有一定现实意义。本工作以稀土催化体系合成的顺丁橡胶(顺1,4-97%、反1,4-2.5%、1.2-0.5%)作为研究对象,订定了顺丁橡胶在溶剂四氢呋喃、甲苯、甲基环乙烷、正-庚烷和丁酮与正-庚烷混合溶剂(体积比为2:1)等中的特性粘数分子量关系式:用Kurata-Stockmayer(KS)方程、Stockmayer-Fixman(SF)方程和Tnagaki-Ptitsyn(IP)方程估算了顺丁橡胶的无扰分子尺寸。顺丁橡胶在溶剂四氢呋喃中的特性粘数-分子量关系式为[η]_(THF)~30 ℃= 0.0246 * M~(0.732)该关系式的获得为采用自记GPC测定和计算顺丁橡胶样品的(M-bar)_w、(M-bar)_n、(M-bar)_w/(M-bar)_x和[η]等重要分子参数提供了方便。因顺丁橡胶在四氢呋喃中的特性粘数-分子量关系式文献至今未见报导。顺丁橡胶在甲苯、甲基环乙烷、正-庚烷和丁酮与正-庚烷混合溶剂中的特性粘数-分子量关系式如下:[η]_(甲苯)~(30 ℃) = 0.0264 * M~(0.719) [η]_(甲基/环已烷)~(30 ℃) = 0.0293 * M~(0.698) [η]_(正-庚烷)~(30 ℃) = 0.1181 * M~(0.547) [η]_(丁酮+正-庚烷)~(30 ℃) = 0.1800 * M~(0.500)发现酮与正-庚烷的混合溶剂(体积比为2:1)在30 ℃时是顺丁橡胶的Θ溶剂。高聚物的无扰分子尺寸,是反映大分子近程相互作用的重要参数,由此可得到有关链结构的重要情报。本工作通过测定已知分子量的样品在四氢呋喃、甲苯、甲基环已烷等良溶剂中的特性粘数,采用KS、SF和IP方程去估算顺丁橡胶的无扰分子尺寸,同时测定了顺丁橡胶在其Θ条件下(丁酮与正-庚烷混合溶剂,体积比2:1,温度30 ℃)的无扰分子尺寸,以此进行对比。用KS方程估算的K_θ = 0.183(ml/g), <γ_o~2>~(1/2)/M~(1/2) = 0.0901(nm)用SF方程估算的K_θ = 0.183和0.200(ml/g), <γ_o~2>~(1/2)/M~(1/2) = 0.0901和0.0928(nm)用IP方程估算的K_θ = 0.192(ml/g), <γ_o~2>~(1/2)/M~(1/2) = 0.0915(nm)用Θ溶剂测定的K_θ= 0.180(ml/g), <γ_o~2>~(1/2)/M~(1/2) = 0.0896(nm)由此可见,用不同方法得到的结果均较接近。
Resumo:
本文较详细地回顾和评述了阴离子、自由基、阳离子和配位型活性聚合。研究了丁二烯在NdCl_3·3λ-PrOH-AlEt_3庚烷非均相体系中配位聚合的链转移规律。分别用Doi、键谷勤、上野治夫提出的三种动力学方法处理-70 ℃下聚合数据,都得相同的结论;聚合体系中不存在可检测出的链转移和链终止反应。产物微观结构规整(顺1.4含量99.4%以上),分子量分布较窄((M-bar)_w/(M-bar)_n = 1.75-2.45)。在这种条件下,实现了配位“活性”聚合。讨论了各种因素对活性聚合的影响。发现随聚合温度的升高,配位“活性”聚合对理想活性聚合有所偏离。而丁二烯在本体系中-70 ℃下的配位“活性”聚合是较理想的活性聚合。聚合反应速度和单体浓度呈一级关系。用Boucher和上野治夫二种方法求得-70 ℃下聚合时活性链浓度(活性中心浓度)结果相同([C~*]=(5 ± 0.7)* 10~(-5)克分子/升)。-70 ℃下聚合的稀土利用率α = 13.5%,聚合速率常数K = 4.1 * 10~(-7)秒~(-1)。用Natta方法计算了在30 ℃、-30 ℃和-70 ℃下聚合时,平均活性链寿命分别是8.5、90分钟和无穷大。-70 ℃下聚合。平均活性链寿命乙趋于无穷大,也证实了活性聚合的结论是正确的。估算了30 ℃和0 ℃聚合时,活性链对单体和对烷基铝的链转移常数(30 ℃下k_(trm)/k_p=1.15 * 10~(-5),k_(trAl)/k_p = 3.80 * 10~(-5)(克分子/升)~(1/2);0 ℃下,k_(trm)/k_p=0.62 * 10~(-5), k_(trAl)k_p = 1.72 * 10~(-5)(克分子/升)~(1/2))。30 ℃下,丁二烯聚合一天,封管室温放置72天,再加异戊二烯单体仍百分之百聚合以及丁二烯-异戊二烯嵌段共聚物的合成和表征,也都证明了在-70 ℃下聚合是按活性机理进行的。
Resumo:
本文是以液态铝为阴极,在稍高于铝-钕合金低共晶点的温度下,熔盐电解制备铝-钕母合金。工作内容分两部分:I、在较低温度(660-700℃)下电解NdCl_3-KCl·NaCl熔体及氟化物添加剂对电解的影响,II、NdCl_3-KCl·NaCl-NaF及NdCl_3-KCl·NaCl-CaF_2熔体部分熔度图。本文第一部分,在30重量%NaCl_3-70重量%KCl·NaCl熔体中,首次于700℃下较系统地研究电解制备铝-钕母合金,电流效率达到78%,加机械搅拌时可达90%,大大超过熔盐电解制备金属钕的电流效率(50%)。但是,实验中看出纯氯化物熔体存在着下列缺点:1、造渣较多,2、当阴极电流密度高于0.75安培/厘米~2时,阴极上生成枝状物沉积;虽然机械搅拌能避免枝状物生成,但操作不便,搅拌棒材料不易解决。本工作的重点是通过添加氟化物改善熔体性能,提高电流效率。实验得出:何氯化物熔体添加氟化物,不仅能改善金属在熔体中的凝聚性能;还能增加熔体流动性、减少造渣、提高熔体稳定性,便于电解质的连续使用;特别是能促进Nd~(3+)离子被铝热还原,使Nd~(3+)离子被电化学还原的同时,伴随的化学还原作用加剧了,提高了钕的沉积效率。本工作还确定,多种氟化物均可作为添加剂,添加量为1%左右,便可得到满意的结果,而无需机械搅拌。实验证实,在熔盐电解制备铝-钕合金时,温度是一个重要因素。除电解质的温度外,阴极合金的温度也有影响,二者的温度愈低,愈有利于提高电流效率。当阴极合金温度不高于675 ℃时,电流效率最高。为配合熔盐电解制取铝-钕母合金,还研究了熔盐的部分物理化学性质。Nd~(3+)离子的析出电势测量结果表明,无论在纯氯化物熔体,还是加有少量氟化物的熔体中,钕在液态铝阴极上的析出电势都比在固态钼阴极上的低1伏左右;不论在液态或固态阴极上,也不论于纯氯化物或加有少量氟化物的电解质中,Nd~(3+)离子的析出电势均随其浓度的增加而下降;但氟化钠的加入使钕的析出电势升高了90毫伏。表面张力测量结果表明,氟化钠使熔体表面张力增大。第二部分,绘制了NdCl_3-KCl·NaCl-NaF及NdCl_3-KCl·NaCl-CaF_2两个熔体的部分熔度图。在实际电解所采用的浓度范围,即NdCl_3含量为10~30重量%时,向熔体添加NaF和CaF_2,对体系初晶点有不同的影响:加1%左右的NaF,体系初晶温度即达到最低点,而加CaF_2,需8%左右才能达到最低点。所得熔度图表明,往溶有10~30重量% NdCl_3的KCl·NaCl熔体添加1%左右的NaF或CaF_2,其初晶点均低于645 ℃,均适于作为在较低温度下电解制备铝-钕母合金的电解质。此外,在附录中还综述了熔盐电解铝-钕母合金的有关研究概况和主要研究方向。
Resumo:
本文使用一套以32MHz自激振荡高频发生器为电源的电感耦合等离子体光源与1米光栅摄谱仪联用,用三重石英炬管、玻璃同心雾化器及双层雾室研究了浓度为0~90%的乙醇溶液对某些元素的原子线及离子线强度的影响,并探讨了产生影响的原因。我们观察到:1.随着乙醇浓度的增大,所有“硬线”(离子张及高电离电位元素的原子线)的强度都有所提高,而对“软线”(中等以下电离电位的元素的原子线),其强度先是下降然后再提高。2.在固定的观察高度上,用一套钒线组,以斜率法测得的激发温度先是随乙醇浓度增大而上升,然后下降。3.乙醇浓度对喷雾器的提取率和有效提取率均有影响,后者随乙醇浓度的增加而增大。我们认为,乙醇浓度对谱线强度的影响主要是由于对激发温度和有效提取率的影响所引起的。在实验中还发现当将不同浓度的乙醇溶液喷入等离子体中时,高频发生器的阳流、栅流和频率等参数都发生有规律的变化;阳流、栅流都随乙醇浓度的增加而增大;振荡频率则相反。估计这是由于等离子体的阻抗发生变化所引起的。当将不同链长的醇类以及其它有机溶剂喷入等离子体时,上述三参数也发生有规律的变化。实验表明,在一定浓度范围内,乙醇溶液可以改善某些元素的检出限。在以上研究的基础上,提出根据将各种酒(啤酒、葡萄酒和烧酒)喷入等离子体中时,相应的阳流、栅流、振荡频率以及粘度值,来大致估计酒中的乙醇含量,并在标准溶液中加入相同量的乙醇来补偿乙醇对ICP感应耦合等离子体发射光谱的影响,研究了酒中主要基体元素对待测元素的影响,进行了最佳工作参数的选择。提出不用预处理,直接将酒试样喷入等离子体中进行多元素的同时测定。对某些元素的测定结果与原子吸收的测定结果作了对比,两者有较好的一致性。
Resumo:
[I] 等离子体聚四氟乙烯的ESCA表征 本研究采用外部电容耦合式聚合装置,频率为13.56MHz,合成了等离子体聚四氟乙烯(PPTFE)。应用ESCA表征了辉光压和非辉光压产物的结构,同时应用CNDO进到了理论计算。结果表明,在辉光压上非辉光压中制得的PPTFE结构差别很大。非辉光内淀积物结构亦现差异。辉光压内的PPTFE是高度支化交联的,在本实验的典型反应条件下,PPTFE的F/C比为1.42,Gs区五个峰确定归属后,各主要对应基团的相对组成约为:CF_3-21%、CF_2-32%、CF-22%、-C from | to | of — 20%,其余为少量的CFH、CH_2(II)、CH_2(I)。在非辉光压内可得到近於线线型的PPTFE,其F/C为2.08,端基CF_3约占15%,CF_2占78%,代表支化交联的基团CF、-C from | to | of -皆为零,另外应用X射线衍射法证实,在非辉光压中形成的PPTFE具有类似于聚四氟乙烯的(PTFE)结晶,这一实验结果至今未见文献报导。深入分析这一结果,并运用ESR、MS、~(19)F-NMR等表征手段,进一步提出四氟乙烯等离子体聚合反应机理。这方面在[II]中论述。本工作提出五类十三种模型化合物,并运用Siegbahn的电荷电位模型同时结合使用CNDO/2电子计算机程序;还运用Pauling价键模型,分别应用这两种理论方法,计算了PPTFE中ClS结合能位移(ΔEi),所得结果相近,从而为ClS区五个峰的归属提供理论依据。五个峰归属为:(1) 284.7(ev) - CH_2(I),(2) 287.0(ev) - -C from | to | of -、CH_2(II),(3) 289.0(ev) -CF、CFH,(4) 291.5(ev) - CF_2,(5) 293.6(ev) - CF_3。通过对模型化合物中ClS的ΔEi计算结果,推导出F作为α、β、γ位碳上的取代基对α位碳上IS电子结合能位移影响所产生的效应值,并初步总结出表达这种效应的经验式:ΔEi = aα + bβ + cγ式中α、β、γ分别为2.23 ± 0.08(ev)、0.27 ± 0.02(ev)、0.20 ± 0.02(ev),a、b、c为取代基F的个数。实验结果还证明,淀积位置、功率、压力、等离子气体如Ar、He、N_2等反应条件对PPTFE膜结构有影响,并应用能量梯度解释这种影响;另外发现,同功率、同压力但不同淀积位置上以及同淀积位置但不同功率或不同压力时的PPTFE膜结构所受能量梯度的影响。本工作根据等离子体聚四氟工烯结构的表征结果,并结合ESR、MS等有关分析数据,提出了PPTFE的结构模型。[II] 等郭子体聚四氟乙烯的反应机理 鉴于等离子体聚合反应的复杂性,目前对等离子体聚合反应机理争论较大,其焦点是:反应的活性中心是离子还是自由基;反应地点是在气相还是在反应体系的固体表面。本工作通过对等离子体聚四氟乙烯气相产物的研究证实:等离子体聚合反就是通过自由基历程,引发和初级链增长主要在气相,脱F和支化交联反应在表面上进行。聚合反应装置同[I]中所述,聚合条件是功率60瓦,压力1 * 10~(-1)乇。通过液氟冷阱收集气相生成物,然后制备成有机溶液和本体溶液。气相生成物的ESR分析结果表明,PPTFE膜中存在自由基浓度约在10~(18)自旋数/克,峰形为一条反对称吸收线,宽为175G,g值是2.005。气相生成物的丙酮、苯、环已烷、已烷等有机溶液的ESR谱相同,皆为20条精细结构分裂谱线。另外,通过一系列实验,检测了桔黄色本体溶液的ESR谱,终于得到具有160条超精细结构的分裂谱线,自由基浓度高达10~(20)自旋数/克。初步认为是几种自由基的混合物,固谱图十分复杂,目前解谱尚有困难,需进一步研究。等高子体气相生成物中有大量自由基并且得到其精细和超精细分裂谱线,这一实验结果至今未见文献报导。这个结果进一步证实了聚合反应的活性中心主要是自由基。考察了PPTFE膜的自由基在90 ℃时随时间变化的ESR谱,发现一开始衰减很快;研究了PPTFE膜的自由基在不同气氛下常温衰减情况,结果指出:辉光压和非辉光压的PPTFE膜中自由基在空气中衰减快,辉光压的PPTFE膜中自由基在真空中及单体气氛中衰减缓慢。气相生成物的有机溶液在90 ℃时随时间变化的ESR谱表明,各峰衰减速率不同,证实并非一种自由基,溶液的自由基能与吡啶反应生成棕红色物质,可能是吡啶盐。本实验用GC-MS联用对气相冷凝物本体溶液进行了分析,比文献上只用MS与聚合反应体系联用分析气相混合物的方法,对分析反应机理提供更为有说服力的实验结果。结果表明,四氟乙烯等离子体聚合的气相生成物是直链的全氟烷烃(分子中碳原子数为C_3-C_8),还有含碳原子数为C_4、C_5、C_6、C_8全氟环烷烃,也可能是括分子链两端是自由基的直链全氟烷烃,还有二氟卡宾。从TFE等离子体聚合的气相中产生齐聚物及其结构特征,可以推断气相中发生了链引发反应和初级增长反应,引发反应的历程首先是TFE单体分子中π键断裂,其次是C~σ-C的σ键均裂,然后通过自由基的复合或诱导反应进行链的初级增长反应。还进行了气相生成物有机溶液的~(19)F-NMR分析,其结果初步看来与GC-MS的结果相一致。还探索了不同条件下在非辉光压内得到的PPTFE膜,进一步表明,在顺着气流方向的淀积位置上的膜结构是接近线型的。这个结果与用质谱、核磁的表征结果相符:从不用方面证实了上述反应历程。此外,通过对PPTFE及PTFE在Ar等离子体系中的刻蚀实验,表明了聚合膜上发生六量脱F反应。由这个结果并结合PPTFE膜及气相产物的结构表征,可以推测到PPTFE膜的支化,交联是通过表面反应进行的。综合四氟乙烯等离子体聚合反应机理的讨论,本论文建议了TFE的等离子体聚合反应历程模型。
Resumo:
本论文“天然水中磷的状态分析”包括四部分内容:一、文献综述:对天然水中磷的状态分析方面的文献作全面的评述。二、乙基紫-杂多酸多无络合物分光光度测定水中磷和砷:建立灵敏、简便、快速测定E磷酸盐的方法。体系在非离子表面活性剂存在下,以磷钼杂多酸与碱性染料乙基紫形成缔合物,水相直接比色侧磷。该方法的摩尔吸光系数达到2.28 * 10~5升、摩尔~(-1)厘米~(-1) (15℃),0-3微光磷/25毫升符合郎伯-比尔定律;体系选用较低的钼酸盐用量。并加入混合还原剂(Na_2S_2O_3 + Na_2So_3)。同时消除硅砷二元素的干扰,降低试剂空白,增加稳定性,缩短显色时间;改变混合还原剂的加入次序可测定砷。三、天然水中磷的状态分析:基于建立的测定E磷酸盐的方法,对二聚、云聚、多聚磷酸采用90℃水语酸化水解,使之转变为E磷酸盐进行测定;天然水中以农药为主的溶解态有机磷,则采用二氯甲烷萃取,萃取液经浓缩、高压各中煮解转变成E磷酸盐进行测定。从而建立起单独测定天然水中有机磷的方法。四、乙基紫纯度及其与磷钼杂多酸多元络合物组成的测定和乙基紫退色机理初探:用离心薄层层析新技术除去乙基紫包含有机杂质,经元素有机分析,确定出乙基紫的纯度,以摩尔比法和连续浓度多更法测定乙基紫一磷钼杂多酸多元络合物组成。另外,根据乙基紫在硫酸介质和它在引入混合还原剂的硫酸介质中的退色行为和吸收光谱的差别,以及它的退色产物的性质、稳定性。结合文献和实验结果,提出乙基紫与硫酸及硫酸溶液中的硫代硫酸钠退色反应的可能机理,对实验现象进行了解释。与同类方法比较,水相比色达到本方法的灵敏度还不多见,且文献中使用乙基紫水相比色测磷达到的最高灵敏度(E)仅为1.13 * 10~5升摩尔~(-1)·厘米~(-1);用混合还原剂同时抑制硅砷的干扰,使乙基紫瞬间退色,降低试剂空白,增加稳定性,在文献中未见报导;改变混合还原剂的加入次序测定磷砷,在碱性染料杂多酸体系水相比色的条件下还是首次;光度分析法分离富集单独测定有机磷的方法也未见文献报导。
Resumo:
本文以甲基萘钠作还原剂,在四氢呋喃溶剂中还原无水LnCl_3(Ln=Pr、Nd),制备了LnCl_2·2THF(Ln=Pr、Nd)。与文献报导的萘锂还原法比较,此方法不仅使产品收率有了很大提高,而且,产品纯度也相应地得到了改善。利用NdCl_2·2THF的强还原性,通过下列路线合成了一种新NdCl_2·2THF+CH_3C_5H_5 →~(-H_2) (CH_3C_5H_4)NdCl_2·THF —— (CH_3C_5H_4)Nd(C_5H_5)·THF型络合物,经元素分析、红外光谱分析、水解产物的色谱分析,确定该络合物的分子式为(CH_3C_5H_4)Nd(C_5H_5)_2·THF,这是第一个含混合配们体的络合物。我们进一步研究了LnCl_2·2THF(Ln=Pr、Nd)与C_5H_5Na的交换反应,分离得到了二种新化合物,其颜色分别为黄色和兰色。这二种络合物是热力学稳定的,分解温度约90℃,但是,它们对空气和水汽是极为敏感的,遇水剧烈反应,并生成氢气,经元素、红外以及水解产物的色谱分析,确定其分子式为(C_5H)5)_6Ln_2Na·8THF(Ln=Pr、Nd)。为了进一步确定其分子结构,我们对这两种络合物的晶体进行了X-光晶体结构分析,但是,由于这两种络合物极不稳定,给结构分析带来了困难,到目前为止已经测得它们均属单斜晶系、P2_1/n空间群及(C_5H_5)_6Nd_2Na·8THF的晶胞常数。此外,我们还详细研究了(C_5H_5)_6Ln_2Na·8THF(Ln=Pr、Nd)与环戊二烯、甲基环戊二烯、二氯甲烷、苄基氯及环氧丙烷的反应。实验结果表明(C_5H_5)_6Nd_2Na·8THF具有与NdCl_2·2THF相似的还原性,可直接与环戊二烯、甲基环戊二烯发生形式上的氧化加成反应,并且确证这种氧化加成反应是发生在(C_5H_5)_6Nd_2Na·8THF中的钕原子与甲基环戊二烯之间的,同时得到了(CH_3C_5H_4)Nd(C_5H_5)_2·THF络合物。(C_5H_5)_6Nd_2Na·8THF与卤化物的反应说明它与典型的+2价稀土有机络合物(C_5Me_5)_2Yb性质相似,可使C-Cl键断裂,使苄基氯发生偶联,生成◎-CH_2-CH_2-◎。(C_5H_5)_6Ln_2Na·8THF(Ln=Pr、Nd)与环氧丙烷的反应速度远大于(C_5Me_5)_2Sm·2THF,这说明(C_5H_5)_6Ln_2Na·8THF(Ln=Pr、Nd)比典型的+2价稀土有机化合物(C_5Me_5)_2Sm·2THF具有更强的还原性。
Resumo:
一 . 本工作利用超声技术,研究和改进了原位产生零价钴,零价镍络合物催化马来酸二甲酯与二溴甲烷的环丙烷化反应。发现,超声波不仅能够加速反应催化中间体Co(COOCH_3)-CH=CH-COOCH_3)_2·(CH_3CN)_2. Ni(COOCH_3)-CH=CH-COOCH_3)_2·CH_3CN的形成,而且可显著缩短环丙烷化反应时间,提高反应收率。如Ni催化体系文献报导,反应24小时产率为33%。而在超声波辐照下6小时产率可达90%;Co催化体系在超声波作用下,半小时产率高达94%,而相应的文献值为63小时64%。因此,本工作为合成化工原料1.2-环丙烷酸二甲酯提供了方便,快捷的方法,并为改进其它负电子烯的环丙烷化反应,提供了依据。二 . 本工作发现:在MDF(N,N-二甲基甲酯胺)、乙脂混合溶剂中,原位产生零价钴络合物催化下,负电子烯(如马来酸二甲酯,丙烯酸甲酯等)与二氯甲烷也能发生环丙烷化反应,开辟了零价金属或零价金属络合物“催化”脆二卤代烷中价格最便宜,最易提纯和保存的二氯甲烷与烯烂较高产率环丙烷化的先例。根据实验现象初步提出了如下机理。
Resumo:
本文通过LnCl_3·nTHF和[C_5H_4(SiMe_3)]Na反应得到了两类配合物[C_5H_4(SiMe_3)] LnCl_2·nTHF (Ln = Nd,Sm,Gd;n = 0,1,2)、[C_5H_4(SiMe_3)] LnCl_2·HCl·nTHF (Ln = Nd,Sm,Gd;n = 1,2)。通过元素分析、红外分析、质谱、核磁共振和热重分析确定了配合物的分子组成,特别是带氯化氢的产品在红外光谱中有1250 cm~(-1),835 cm~(-1),748 cm~(-1)自的三甲基硅基特征吸收峰。对氯化稀上进行了结构分析,结果发现LnCl_3·4THF (Ln = Sm,Gd)是与NdCl_3·4THF之间存在着变态关系。GdCl_3·4THF。晶体属单斜晶系,空间群为P21/C,晶胞参数为a = 30.765(7),b = 8.219(3),C = 17.534(3)A~·,β = 93.71(2)°;SmCl_3·4THF。晶体属单斜晶系,空间群为P21/C,晶胞参数为a = 30.921(13),b = 8.287(7),C = 17.665(8),β = 94.17(4)°。LnCl_3·4THF的单位晶胞中存在着八个分子,每对分子互相等同,但每对分子内部两个分子之间互不等同。SmCl_3·2THF·DME晶体属单斜晶系,空间群为P21/a,晶胞参数为a = 13.547(8),b = 8.607(4),C = 16.029(9)A°,β = 90.53(5)°。铲原子与三个氯原子。两个四氢呋喃中的氧原子以及DME中的两个氧原子键合,形成七配位的配合物,但是配位多面体不是理想的五角双锥,而是形成了比五角双锥(D_(5h))对称性更低的多面体(C_(3v))。它能看作是在正八面体的一个面的中心加上第七个原子的结果,而且这八面体主要受到决定上述那个面的三个原子伸展开的畸变。在制备C_5H_5SiMe_3时,如果不用减压蒸馏,而在常压下直接蒸馏,则得到的不是C_5H_5SiMe_3而是它的二聚体(C_5H_5SiMe_3)_2。用红外光谱和核磁共振确定了它的组成和结构,特别是在1650 cm~(-1)处出现(C_5H_5SiMe_3)_2的孤立双键吸收峰。用C_5H_5SiMe_3和Ee(CO)_5回流反应制得了[C_5H_4(SiMe_3) Ee(CO)_2]_2。经过元素分析,红外光谱,质谱,顺磁共振确定了配合物的组成,红外光谱中有桥羰基的吸收峰,质谱图中498的离子峰的出现标志着上述二聚体的存在。用[C_5H_5Fe(CO)_2]_2作为制备双金属配合物的原料,用Na/Hg并还原[C_5H_5Fe(CO)_2]_2。反应时间为6-7小时得到中间体[C_5H_5Fe(CO)_2]_2Na·4THF的深紫红色晶体。反应时间加长,中间体被破坏,反应到15小时时生成了[C_5H_5Fe(CO)_2]Na·TMEDA的黄色晶体,特别是中间体的获得及晶体结构的测定对我们解释反应的机理非常重要。[C_5H_5Fe(CO)_2]_2Na·4THF为单斜晶系,空间群为P21/n,晶胞参数为a = 10.155(5),b = 17.121(4),C = 18.667(6)A°,β = 97.61(3)°,V = 3216.9A°~3, 2 = 4。铁的配位数为七,钠的配位数为六,钠离子和桥连羰基氧以配位键结合,每个钠离子连结着两个[C_5H_5Fe(CO)_2]_2~-,而每个[C_5H_5Fe(CO)_2]_2~-又连结着两个钠离子,组成一个无限链状分子,键状分子间以Van de W力结合。[C_5H_5Fe(CO)_2]Na·TMEDA正交晶系,空间群为P_(2,2,2,)。晶胞参数为a = 6.001(4),b = 10.644(6),C = 24.214(11)A~·。α = β = r = 90°。z = 4 V = 1546·7A°~3,铁的配位数为五。钠的配位数为四,钠离子和羰基氧以配位键结合,每个钠离子连结着两个[C_5H_5Fe(CO)_2]~-,每个[C_5H_5Fe(CO)_2]~-又连结着两个钠离子,体系就是以这种连结方式或正负电荷交替的形式无限螺旋分子,每个链节存在着两个[C_5H_5Fe(CO)_2]Na·TMEDA分子,链节的长度为a轴的轴长,说明螺旋分子以a轴轴长向上平移。用LnCl_3·nTHF和[C_5H_5Fe(CO)_2]Na反应制得了[C_5H_5Fe(CO)_2] LnCl_2·nTHF (Ln = Nd, Sm, Gd; n = 1, 2),用[C_5H_5Fe(CO)_2] LnCl_2和[C_5H_4(SiMe_3)]Na或用[C_5H-4(SiMe_3)] LnCl_2和[C_5H_5Fe(CO)_2]Na得到[C_5H_5Fe(CO)_2] [C_5H_4(SiMe_3)] LnCl·nTHF (Ln = Nd, Sm, Gd; n = 0, 1, 3),配合物[C_5H_5Fe(CO)_2] LnCl_2·nTHF及[C_5H_5Fe(CO)_2] [C_5H_4(SiMe_3)] LnCl·nTHF中存在着2000 cm~(-1)左右的终端羰基吸收峰及1766 cm~(-1)左右的桥连羰基吸收峰。说明稀土和铁之间是以羰基相连的。在TOTOE质谱仪上,配合物[C_5H_5Fe(CO)_2]Gd~·Cl·THF出现[C_5H_5Fe(CO)]GdCl_2、[Fe(CO)_2] Gd~+Cl_2的离子峰,配合物[C_5H_5Fe(CO)_2]-[C_5H_4(SiMe_3)] GdCl·THF出现[C_5H_5Fe(CO)_2] [C_5H_4]Gd~+Cl、[C_5H_5Fe(CO)_2]Gd~+Cl·[C_5H_4C(SiMe_3)] Gd~+Cl等离子峰。所有稀土有机配合物都溶于四氢呋喃、苯,对空气和水敏感。
Resumo:
本文研究了碱土金属锶、钙与新型显色剂2-(4-氯-2-苯膦酸)-7-(2, 6-二溴-4-氯苯基)-1,8-二羟基-3,6-萘二磺酸(简称DBC-偶氮氯膦)的显色反应及其在分析上的应用。研究结果提出了两种高选择性的测定锶、钙的新方法。本文研究出的新分析方法在实际样品的分析中收到了令人满意的结果。本文还研究了碱土金属元素与五种多卤代偶氮氯膦类试剂的显色反应性能,对反应的机理和配合物的结构方面的问题作了一些研究及探讨。通过对几种多卤代偶氮氯膦类试剂与碱土金属显色反应的研究。筛选出较好的显色剂,并对寻求更好的碱土元素显色剂提出了一些建议。本论文分五个部分,现分述如下:1. 一种新的测定锶的高选择性光度法的研究:本文利用武汉大学化学系最近合成的新显色剂DBC-偶氮氯膦进行了锶显色反应及其在分析上应用的研究。研究结果表明:锶与DBC-偶氮氯膦在酸性条件下可形成一种十分稳定的兰色配合物,该配合物在630nm波长处有最大吸收。摩尔吸光系数为ε=6.0*10~4l·mol~(-1)·cm~(-1)配合物中Sr:DBC-偶氮氯膦=1:2。在丙酮、Na_2SO_4、EDTA等存在下,并采用双波等分光光度,有效地消除了钡、钙的干扰及在此条件下其他共存的三十余种离子的干扰。本文还进行了显色酸度,配合物稳定性的试验,利用本方法进行了海水,氧化镁试剂和硅铁锶合金中锶的直接测定,结果较为满意,与其他方法进行对照,结果相符,加入试验的回收率一般为99-102%。方法灵敏,简便,选择性好,快速和不需要任何分离过程。2. DBC-偶氮氯膦与钙显色反应的研究及其在高纯氧化钇中钙的测定的应用:本文利用DBC-偶氮氯膦进行了钙显色反应的研究。并将此显色反应于高纯氧化钇(Y_2O_3>99.99%~99.999%)中的ppm级的钙的测定。本文进行了钙与DBC-偶氮氯膦生成的配合物的吸收光谱,显色反应酸度范围,显色剂的用量,配合物的稳定性,配合物的组成及干扰组分的消除等方面的研究。研究结果表明:钙在弱碱性条件下可与DBC-偶氮氯膦形成一种兰色的配合物,该配合在625nm处有最大吸收。表观摩尔吸光系ε=2.8*10~4l·mol~(-1)·cm~(-1)。配合物的组成是Ca:DBC-偶氮氯膦=1:1。在DTPA-Zn存在下较大量的氧化钇和铁等三十余种离子不干扰测定。方法线性范围较宽。配合使用偶氮氧化BN-TBP(磷酸三丁酯)-环乙烷体系进行一次简单的粗分离后,成功地测定了高纯氧化钇中的微量钙,此方法是目前已见报导的分光光度法中,在测定高纯氧化钇中微量钙方面最简便的方法。用此方法测定的削钢中微量钙,也得到满意的结果,加入试验回收率较好。方法灵敏、简易、选择性较好。3. 新型显色剂DBC-偶氮氯膦的提纯和鉴定:本文提出了一种分离提纯新型稀土显色剂DBC-偶氮氯膦的方法。通过利用国产离心薄层层析仪。在硅胶G和CaSO_4做的薄板上,以甲醇和二氯甲烷作展开剂,分离了杂质。然后用PMBP环乙烷萃取了其中引入的钙,提纯后的试剂经过分析鉴定,纯度在94%以上,其中钙量低于空白值(原子吸收法测定)。方法产率在90%以上,用提纯后的试剂进行了红外光谱,元素分析,热失重分析,得到了试剂组成及结构,与试剂合成单位所提出的一样,并用层析法,光度法检查了纯度,比较了粗品与纯品的吸收曲线和对碱土的灵敏度。4. 碱土金属与多卤代偶氮氯膦类试剂的显色反应的研究:本文研究了钙、锶、钡分别与五种多卤代偶氮氯膦类试剂(2,6-二溴-4-氯偶氮氯膦,2,4,6-三溴偶氮氯膦,2,6-二溴-4-磺酸偶氮氯膦。2,4,6-三氯偶氮氯膦,2,6-二溴-4-硝基偶氮氯膦)显色反应。记录了各显色反应的吸收光谱。试验了各元素与各种试剂显色的酸度范围,测定了各种配合物的组成,进行了各种试剂对碱土元素的选择性的试验。比较了几种试剂对碱土的灵敏度。研究结果表明:TB-偶氮氯膦和DBC-偶氮氯膦是较好的碱土试剂,从灵敏度,选择性和显色酸度来看,这两个试剂都优于其他几种试剂。DBN-偶氮氯膦性能较差。研究还指出,钙只有在碱性条件下才能与这几种试剂较好地显色。酸性条件下碱土元素与几种试剂都形成1:2配合物。钙在碱性条件下与试剂形成的是1:1配合物。本文对试剂结构与其性能方面的关系进行了讨论。对进一步合成新的碱土试剂提出了一些看法。5.碱土金属与DBC-偶氮氯膦显色反应机理及配合物结构的探讨:本文研究了DBC-偶氮氯膦在不同酸度下的存在形式,质子化情况及反应中的质子释放情况。测定了钙、锶、钡与其形成的配合物的稳定常数。利用红外光谱、激光拉曼光谱、核磁共振谱等对所生成配合物的结构进行了研究。根据实验结果和有关的分子轨道理论。配位场理论对配合物的结构进行了讨论。提出配合物的结构式及空间构型。本文还对显色反应机理和配合物成键情况进行了初探。本文的研究工作。为进一步开展水溶液中配合物结构的研究和显色反应机理的研究起了抛砖引玉的作用。