139 resultados para lateral bipolar junction transistor (BJT)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The n-type GaAs substrates are used and their conductive type is changed to p-type by tunnel junction for AlGaInP light emitting diodes (TJ-LED), then n-type GaP layer is used as current spreading layer. Because resistivity of the n-type GaP is lower than that of p-type, the effect of current spreading layer is enhanced and the light extraction efficiency is increased by the n-type GaP current spreading layer. For TJ-LED with 3μm n-type GaP current spreading layer, experimental results show that compared with conventional LED with p-type GaP current spreading layer, light output power is increased for 50% at 20mA and for 66.7% at 100mA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We proposed a new method to suppress the crystallographic tilt in the lateral epitaxial overgrowth of GaN by using an oxide mask with a newly designed pattern. A rhombus mask with edges oriented in the direction of <10 - 10>(GaN) was used instead of the traditional stripe mask. The morphology evolution during the LEO GaN with the rhombus mask was investigated by SEM, and the crystallographic tilt in the LEO GaN was measured by DC-XRD. It is found that using the new rhombus mask can decrease the crystallographic tilt in the LEO GaN. In addition, this method makes the ELO GaN stripes easy to coalesce. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Principle of optical thin film was used to calculate the feasibility of improving the light extraction efficiency of GaN/GaAs optical devices by wafer-bonding technique. The calculated results show that the light extraction efficiency of bonded samples can be improved by 2.66 times than the as-grown GaN/GaAs samples when a thin Ni layer was used as adhesive layer and Ag layer as reflective layer. Full reflectance spectrum comparison shows that reflectivity for the incident light of 459.2 nm of the bonded samples was improved by 2.4 times than the as-grown samples, which is consistent with the calculated results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of dielectric surface energy on the initial nucleation and the growth of pentacene films as well as the electrical properties of the pentacene-based field-effect transistors are investigated. We have examined a range of organic and inorganic dielectrics with different surface energies, such as polycarbonate/SiO2, polystyrene/SiO2, and PMMA/SiO2 bi-layered dielectrics and also the bare SiO2 dielectric. Atomic force microscopy measurements of sub-monolayer and thick pentacene films indicated that the growth of pentacene film was in Stranski-Kranstanow growth mode on all the dielectrics. However, the initial nucleation density and the size of the first-layered pentacene islands deposited on different dielectrics are drastically influenced by the dielectric surface energy. With the increasing of the surface energy, the nucleation density increased and thus the average size of pentacene islands for the first mono-layer deposition decreased. The performance of fabricated pentacene-based thin film transistors was found to be highly related to nucleation density and the island size of deposited Pentacene film, and it had no relationship to the final particle size of the thick pentacene film. The field effect mobility of the thin film transistor could be achieved as high as 1.38 cm(2)/Vs with on/off ratio over 3 x 10(7) on the PS/SiO2 where the lowest surface energy existed among all the dielectrics. For comparison, the values of mobility and on/off ratio were 0.42 cm(2)/Vs and 1 x 10(6) for thin film transistor deposited directly on bare SiO2 having the highest surface energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-shaped negative differential resistance (NDR) with a high peak-to-valley ratio (PVR) is observed in a GaAs-based modulation-doped field effect transistor (MODFET) with InAs quantum dots (QDs) in the barrier layer (QDFET) compared with a GaAs MODFET. The NDR is explained as the real-space transfer (RST) of high-mobility electrons in a channel into nearby barrier layers with low mobility, and the PVR is enhanced dramatically upon inserting the QD layer. It is also revealed that the QD layer traps holes and acts as a positively charged nano-floating gate after a brief optical illumination, while it acts as a negatively charged nano-floating gate and depletes the adjacent channel when charged by the electrons. The NDR suggests a promising application in memory or high-speed logic devices for the QDFET structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new carbazole copolymers, poly(9-(2,5-diarene-[1,3,4]oxadiazole)-carbazole-alt-9-(2-ethylhexyl)-carbazole-3,6-diyl)s (P1), poly(9-(2,5-diarene-[1,3,4]oxadiazole)-2, 7-carbazole-alt-9-(2-ethylhexyl)-3, 6-carbazole-diyl)s (P2), and poly(9-(2,5-diarene-[1,3,4]oxadiazole)-carbazole-alt-9-(2-ethylhexyl)-carbazole-2,7-diyl)s (P3), were synthesized by the Suzuki coupling reaction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bipolar transport compound, 2,5-bis(4-(9-(2-ethylhexyl)-9H-carbazol-3-yl) phenyl)-1,3,4-oxadiazole (CzOXD), incorporating both electron-and hole-transport functionalities, was synthesized and fully characterized by H-1 NMR, C-13 NMR, elemental analysis and mass spectrometry. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate hybrid vertical architecture transistors that operate like metal-base transistors, using n-type silicon as the collector, sulfonated polyaniline as the base, and C-60 fullerene as the emitter. Electrical measurements suggest that the sulfonated polyaniline base effectively screens the emitter from electric field variations occurring in the collector leading to the metal-base transistor behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the suitability of N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), an organic semiconductor widely used in organic light-emitting diodes (OLEDs), for high-gain, low operational voltage nanostructured vertical-architecture transistors, which operate as permeable-base transistors. By introducing vanadium oxide (V2O5) between the injecting metal and NPB layer at the transistor emitter, we reduced the emitter operational voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the fabrication of permeable metal-base organic transistors based on N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/C-60 heterojunction as both emitter and collector. By applying different polarities of voltage bias to the collector and the base, and input current to the emitter, the ambipolar behavior can be observed. The device demonstrates excellent common-base characteristics both in P-type and N-type modes with common-base current gains of 0.998 and 0.999, respectively.