267 resultados para high electron mobility transistors
Resumo:
The authors report enhanced poly(3-hexylthiophene) (P3HT):methanofullerene (PCBM) bulk-heterojunction photovoltaic cells via 1,2-dichlorobenzene (DCB) vapor treatment and thermal annealing. DCB vapor treatment can induce P3HT self-organizing into ordered structure leading to enhanced absorption and high hole mobility. Further annealing the device at a high temperature, PCBM molecules begin to diffuse into aggregates and together with the ordered P3HT phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Compared to the control device that is merely annealed, optical absorption, short-circuit current, and power conversion efficiency are increased for the DCB vapor-treated cell.
Resumo:
The vesicle of didodecyldhnethylammonimn bromide (DDAB) which contained tetrathiafulvalene (TTF) was mixed with xanthine oxidase, and the mixture was cast on the pyrolytic graphite electrode. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. TTF was used as a mediator because of its high electron-transfer efficiency. A novel xanthine biosensor based on cast DDAB film was developed. The effects of pH and operating potential were explored for optimum analytical performance by using the amperometric method. The response time of the biosensor was less than 10 s. The detection limit of the biosensor was 3.2 x 10(-7) mol/L and the liner range was from 4 x 10(-7) mol/L to 2.4 x 10(-6) mol/L.
Resumo:
A novel glucose biosensor based on cast lipid film was developed. This model of biological membrane was used to supply a biological environment on the surface of the electrode, moreover it could greatly reduce the interference and effectively exclude hydrophilic electroactive material from reaching the detecting surface. TTF was selected as a mediator because of its high electron-transfer efficiency, and it was incorporated in the lipid film firmly. Glucose oxidase was immobilized in hydrogel covered on the lipid film. The effects of pH, operating potential were explored for the optimum analytical performance by using amperometric method. The response time of the biosensor was less than 20 s, and the linear range is up to 10 mmol l(-1) (corr. coeff. 0.9932) with the detection limit of 2 x 10(-5) mol l(-1). The biosensor also exihibited good stability and reproducibility. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
An acid-stable soybean-peroxidase biosensor was devel oped by immobilizing the enzyme in a sol-gel thin film. Methylene blue was used as a mediator because of its high electron-transfer efficiency. The sol-gel thin film and enzyme membrane were characterized by FT-IR, and the effects of pH, operating potential, and temperature were explored for optimum analytical performance by using the amperometric method. The H2O2 sensor exhibited a fast response (5 s), high sensitivity (27.5 mu A/mM), as well as good thermostability and long-term stability. In addition, the performance of the biosensor was investigated using flow-injection analysis (FIA).
Resumo:
The properties of electron states in the presence of microwave irradiation play a key role in understanding the oscillations of longitudinal resistance and the zero-resistance states in a high-mobility two-dimensional electron gas(2DEG) in low magnetic field. The properties of electron states in a high-mobility and low-density GaAs/Al0.35Ga0.65As 2DEG in the presence of Ka-band microwave irradiation were studied by reflectance-based optically detected cyclotron resonance(RODCR). The influences of the direction of microwave alternating electronic field, wavelength of the laser, and temperature on RODCR results were discussed. The results show that RODCR measurements provide a convenient and powerful method for studying electron states in 2DEG.
Resumo:
By utilizing time-resolved Kerr rotation techniques, we have investigated the spin dynamics of a high-mobility low density two-dimensional electron gas in a GaAs/Al0.35Ga0.65As heterostructure in the dependence on temperature from 1.5 to 30 K. It is found that the spin relaxation/dephasing time under a magnetic field of 0.5 T exhibits a maximum of 3.12 ns around 14 K, which is superimposed on an increasing background with rising temperature. The appearance of the maximum is ascribed to that at the temperature where the crossover from the degenerate to the nondegenerate regime takes place, electron-electron Coulomb scattering becomes strongest, and thus inhomogeneous precession broadening due to the D'yakonov-Perel' mechanism becomes weakest. These results agree with the recent theoretical predictions [J. Zhou et al., Phys. Rev. B 15, 045305 (2007)], which verify the importance of electron-electron Coulomb scattering to electron spin relaxation/dephasing.
Resumo:
We report on time-resolved Kerr rotation measurements of spin coherence of electrons in the first excited subband of a high-mobility low-density two-dimensional electron system in a GaAs/Al0.35Ga0.65As heterostructure. While the transverse spin lifetime (T-2(*)) of electrons decreases monotonically with increasing magnetic field, it has a nonmonotonic dependence on the temperature and reaches a peak value of 596 ps at 36 K, indicating the effect of intersubband electron-electron scattering on the electron-spin relaxation.
Resumo:
The organic films of vanadyl-phthalocyanine (VOPc) compounds showed weak epitaxy growth (WEG) behavior on thin ordered para-sexiphenyl (p-6P) layer with high substrate temperature. The WEG of VOPc molecules standing up on the p-6P layer leaded to high in-plane orientation and their layer-by-layer growth behavior. In consequence, high quality VOPc films were obtained, which were consisted of lamellar crystals. Organic field-effect transistors with VOPc/p-6P films as active layers realized high mobility of above 1 cm(2)/V s. This result indicated that nonplanar compounds can obtain a device performance better than planar compounds, therefore, it may provide a rule to find disklike organic semiconductor materials.
Resumo:
Pentacene thin-film transistors have been obtained using polymethyl-methacrylate-co-glyciclyl-methacrylate (PNIMA-GMA) as the gate dielectric. The optimum active layer thickness in thin-film transistors (OTFTs) was investigated. The present devices show a wide operation voltage range. The on/off current ratio is as high as 10(5). In linear region (V-DS = -2V), the field-effect mobility of device increases with the increase in gate field at low-voltage region (V-G < - 20 V), and a mobility of 0.33 cm(2)/Vs can be obtained when V-G > 20 V. In saturation region, the mobility increases linearly with the gate field, and a high mobility of 1.14 cm(2)/Vs can be obtained at V-G = -95V. The influence of voltage on mobility of device was investigated.
Resumo:
This paper proposes two kinds of novel hybrid voltage controlled ring oscillators (VCO) using a single electron transistor (SET) and metal-oxide-semiconductor (MOS) transistor. The novel SET/MOS hybrid VCO circuits possess the merits of both the SET circuit and the MOS circuit. The novel VCO circuits have several advantages: wide frequency tuning range, low power dissipation, and large load capability. We use the SPICE compact macro model to describe the SET and simulate the performances of the SET/MOS hybrid VCO circuits by HSPICE simulator. Simulation results demonstrate that the hybrid circuits can operate well as a VCO at room temperature. The oscillation frequency of the VCO circuits could be as high as 1 GHz, with a -71 dBc/Hz phase noise at 1 MHz offset frequency. The power dissipations are lower than 2 uW. We studied the effect of fabrication tolerance, background charge, and operating temperature on the performances of the circuits.
Resumo:
Electron irradiation induced defects in InP material which has been formed by high temperature annealing undoped InP in different atmosphere have been studied in this paper. In addition to Fe acceptor, there is no obvious defect peak in the sample before irradiation, whereas five defect peaks with activation energies of 0.23 eV, 0.26 eV, 0.31 eV, 0.37 eV and 0.46 eV have been detected after irradiation. InP annealed in P ambient has more thermally induced defects, and the defects induced by electron irradiation have characteristics of complex defect. After irradiation, carrier concentration and mobility of the samples have suffered obvious changes. Under the same condition, electron irradiation induced defects have fast recovery behavior in the FeP2 ambient annealed InP. The nature of defects, as well as their recovery mechanism and influence on material property have been discussed from the results.
Resumo:
The mobility of channel electron, for partially depleted Sol nMOSFET in this paper, decreases with the increase of implanted fluorine dose in buried oxide layer. But, the experimental results also show that it is larger for the transistor corresponding to the lowest implantation dose than no implanted fluorine in buried layer. It is explained in tern-is of a "lubricant" model. Mien fluorine atoms are implanted in the top silicon layer, the mobility is the largest. In addition, a positive shift of threshold voltage has also been observed for the transistors fabricated on the Sol wafers processed by the implantation of fluorine. The causes of all the above results are discussed.
Resumo:
This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator,which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.
Resumo:
Photoluminescence (PL) and temperature-dependent Hall effect measurements were carried out in (0001) and (11 (2) over bar0) AlGaN/GaN heterostructures grown on sapphire substrates by metalorganic chemical vapor deposition. There are strong spontaneous and piezoelectric electric fields (SPF) along the growth orientation of the (0001) AlGaN/GaN heterostructures. At the same time there are no corresponding SPF along that of the (1120) AlGaN/GaN. A strong PL peak related to the recombination between two-dimensional electron gas (2DEG) and photoexcited holes was observed at 3.258 eV at room temperature in (0001) AlGaN/GaN heterointerfaces while no corresponding PL peak was observed in (11 (2) over bar0). The existence of a 2DEG was observed in (0001) AlGaN/GaN multi-layers with a mobility saturated at 6000 cm(2)/V s below 80 K, whereas a much lower mobility was measured in (11 (2) over bar0). These results indicated that the SPF was the main element to cause the high mobility and high sheet-electron-density 2DEG in AlGaN/GaN heterostructures. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A series of donor-acceptor low-bandgap conjugated polymers, i.e., PTnBT (n = 2-6), composed of alternating oligothiophene (OTh) and 2,1,3-benzothiadiazole (BT) units were synthesized by Stille cross-coupling polymerization. The number of thiophene rings in OTh units, that is n, was tuned from 2 to 6. All these polymers display two absorption bands in both solutions and films with absorption maxima depending on n. From solution to film, absorption spectra of the polymers exhibit a noticeable red shift. Both high- and low-energy absorption bands or P'F5BT and PT6BT films locate in the visible region, which are at 468 and 662 nm for PT5BT and 494 and 657 nm for PT6BT.