570 resultados para emitting phosphors
Resumo:
Vertical cavity surface emitting lasers operating in the 1.3- and 1.5-mu m wavelength ranges are highly attractive for telecommunications applications. However, they are far less well-developed than devices operating at shorter wavelengths. Pulsed electrically-injected lasing at 1.5 mu m, at temperatures up to 240 K, is demonstrated in a vertical-cavity surface-emitting laser with one epitaxial and one dielectric reflector. This is an encouraging result in the development of practical sources for optical fiber communications systems.
Resumo:
An InP-based one-dimensional photonic crystal quantum cascade laser is realized. With photo lithography instead of electron beam lithography and using inductively coupled plasma etching, four-period air-semiconductor couples are defined as Bragg reflectors at one end of the resonator. The spectral measurement at 80K shows the quasi-continuous-wave operation with the wavelength of 5.36μm for a 22μm-wide and 2mm-long epilayer-up bonded device.
Resumo:
By etching a second-order grating directly into the Al-free optical waveguide region of a ridgewaveguide(RW) AlGaInAs/AlGaAs distributed feedback(DFB) laser diode,a front facet output power of 30mW is obtained at about 820nm with a single longitudinal mode. The Al-free grating surface permits the re-growth of a high-quality cladding layer that yields excellent device performance. The threshold current of these laser diodes is 57mA,and the slope efficiency is about 0.32mW/mA.
Resumo:
The effect of mesa size on the thermal characteristics of etched mesa vertical-cavity surfaceemitting lasers(VCSELs) is studied. The numerical results show that the mesa size of the top mirror strongly influences the temperature distribution inside the etched mesa VCSEL. Under a certain driving voltage, with decreasing mesa size, the location of the maximal temperature moves towards the p-contact metal, the temperature in the core region of the active layer rises greatly, and the thermal characteristics of the etched mesa VCSELs will deteriorate.
Resumo:
A 1.3μm low-threshold edge-emitting AlGaInAs multiple-quantum-well(MQW) laser with AlInAs-oxide confinement layers is fabricated.The Al-contained waveguide layers upper and low the active layers are oxidized as current-confined layers using wet-oxidation technique.This structure provides excellent current and optical confinement,resulting in 12.9mA of a low continuous wave threshold current and 0.47W/A of a high slope efficiency of per facet at room temperature for a 5-μm-wide current aperture.Compared with the ridge waveguide laser with the same-width ridge,the threshold current of the AlInAs-oxide confinement laser has decreased by 31.7% and the slope efficiency has increased a little.Both low threshold and high slope efficiency indicate that lateral current confinement can be realized by oxidizing AlInAs waveguide layers.The full width of half maximum angles of the Al-InAs-oxide confinement laser are 21.6° for the horizontal and 36.1° for the vertical,which demonstrate the ability of the AlInAs oxide in preventing the optical field from spreading laterally.
Resumo:
Both the vertical cavity surface emitting diodes and detectors are fabricated by using the epitaxial wafer with resonant cavity structure. Their characteristics are analyzed. The light emitters have high spectral purity of 4.8nm and high electroluminescence intensity of 0.7mW while injection current is 50mA. A 1*16 array of surface emitting light device is tested on line by probes and then used for module. The light detectors have wavelength selectivity and space selectivity. The required difference in input mirror reflectivity between emitters and detectors can easily be achieved though varying the numbers of top DBR period by etching.
Resumo:
Small signal equivalent circuit model and modulation properties of vertical cavity-surface emitting lasers (VCSEL's) are presented. The modulation properties both in analytic-equation calculation and in circuit model simulation are studied. The analytic-equation calculation of the modulation properties is calculated by using Mathcad program and the circuit model simulation is simulation is simulated by using Pspice program respectively. The results of calculation and the simulation are in good agreement with each other. Experiment is performed to testify the circuit model.
Resumo:
The n-type GaAs substrates are used and their conductive type is changed to p-type by tunnel junction for AlGaInP light emitting diodes (TJ-LED), then n-type GaP layer is used as current spreading layer. Because resistivity of the n-type GaP is lower than that of p-type, the effect of current spreading layer is enhanced and the light extraction efficiency is increased by the n-type GaP current spreading layer. For TJ-LED with 3μm n-type GaP current spreading layer, experimental results show that compared with conventional LED with p-type GaP current spreading layer, light output power is increased for 50% at 20mA and for 66.7% at 100mA.
Resumo:
国家自然科学基金
Resumo:
The polarization of vertical-cavity surface-emitting laser (VCSEL) can be controlled by electro-optic birefringence. We calculated the birefringence resulted from external electric field which was imposed on the top DBR of VCSEL by assuming that the two polarization modes were in the same place of the gain spectra in the absence of electric field beginning. By modifying SFM, the affection of the electric field strength on the polarization switching currents between the two polarization modes had been shown.
Resumo:
Small signal equivalent circuit model of vertical cavity surface emitting lasers (VCSEL's) is given in this paper. The modulation properties of VCSEL are simulated using this model in Pspice program. The simulation results are good agree with experiment data. Experiment is performed to testify the circuit model.
Resumo:
Native Oxide AlAs layer were employed to block the current injection from the tup anode. The luminous intensity exceeded 75 mcd of the LED chip with native oxide AlAs layer sandwiched 5 mu m AlGaAs current spreading layer under 20 mA current injection. Electrical and optical properties the LED chip and plastically sealed lamp were measured. Aging of the LED chip and lamp were performed under 70 degrees C and room temperature, Experiment results shown that there is no apparent effect of the native oxided AlAs layer and the process on the reliability of the LED devices.
Resumo:
A novel coupled distributed Bragg reflector (DBR) with double thickness periods was theoretically analyzed based on the spontaneous radiation properties of high brightness AlGaInP light emitting diodes(LED). Several important factors were considered including spontaneous radiation angle distribution, absorption and FTR of DBR. Calculation results showed that the optimum optical thickness of single layer of the DBR deviates from 1/4 lambda. AIGaInP high brightness light emitting diodes both with Al0.5Ga0.5As/AlAs coupled DBR and with conventional DBR were fabricated by metalorganic chemical vapor deposition(MOCVD). X-ray double crystal diffraction and reflection spectrum were employed to determine the thickness and reflectivity of the DBR. It was found that reflectivity of coupled DBR is less sensitive to incident angle than conventional DBR, higher external quantum efficiency of light emitting diodes with coupled DBR was obtained than that with conventional DBR.
Resumo:
Orange AlGaInP high brightness light emitting diodes (LEDs) were fabricated by low pressure metalorganic chemical vapor deposition(LP-MOCVD) technology. AlGaInP double heterojunction structure was used as active layer. 15 pairs of Al0.5Ga0.5As/AlAs distributed Bragg reflector and 7 mu m Al0.8Ga0.2As current spreading layer were employed to reduce the absorption of GaAs substrate and upper anode respectively. At 20mA the LEDs emitting wavelength was between 600-610nm with 18.3nm FWHM, 0.45mW radiation power and 1.7% external quantum efficiency. Brightness of the LED chips and LED lamps with 15 degrees viewing angle(2 theta(1/2)) reached 30mcd and 1000mcd respectively.
Resumo:
We have designed and fabricated the visible vertical-cavity surface-emitting lasers (VCSEL's) by using metalorganic vapor phase epitaxy (MOVPE). We use the 8 lambda optical cavities with 3 quantum wells in AlGaInP/AlGaAs red VCSEL's to reduce the drift leakage current and enhance the model gain in AlGaInP active region. The structure has a p-type stack with 36 DBR pairs on the top and an n-type with 55-1/2 pairs on the bottom. Using micro-area reflectance spectrum, we try to get a better concordance between the center wavelength of DBR and the emitting wavelength of the active region. We used a component graded layer of 0.05 lambda thick (x = 0.5 similar to 0.9) at the p-type DBR AlGaAs/AlAs interface to reduce the resistance of p-type DBR. We use selective oxidation to define the current injection path. Because the oxidation rate of a thick layer is faster than a thinner one, we grown a thick AlAs layer close to the active region. In this way, we got a smaller active region for efficient confinement of injected carriers (the aperture area is 3 x 3 mu m) to reduce the threshold and, at the same time, a bigger conductive area in the DBR layers to reduce the resistance. We employ Zn doping on the p-side of the junction to improve hole injection and control the Zn dopant diffusion to get proper p-i-n junction. At room temperature, pulse operation of the laser has been achieved with the low threshold current of 0.8mA; the wavelength is about 670nm.