242 resultados para vesicle-micelle transition
Resumo:
Eu ions doped SiO2 thin films, SiO2( Eu), were prepared by co-sputtering of SiO2 and Eu2O3 and Eu ion implantation into thermally grown SiO2 films. The Eu-L-3-edge X-ray absorption near edge structure (XANES) spectra of SiO2(Eu) films show a doublet absorption peak structure with energy difference of 7 eV, which indicates the conversion of Eu3+ to Eu2+ at high annealing temperature in N-2. The strong blue luminescence of SiO2(Eu) films prepared by ions implantation after films annealed above 1100 degreesC confirms the above argument.
Resumo:
The photoluminescence (PL) of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots has been measured at 15 and 80 K under hydrostatic pressure. The lateral size of the dots ranges from 7 to 62 nm. The emissions from the dots with 26, 52 and 62 nm size have a blue shift under pressure, indicating that these quantum dots have the normal type-I structure with lowest conduction band at the Gamma -valley. However, the PL peak of dots with 7 nm diameter moves to lower energy with increasing pressure. It is a typical character for the X-related transition. Then these small dots have a type-II structure with the X-valley as the lowest conduction level. An envelope-function calculation confirms that the Gamma -like exciton transition energy will rise above the X-like transition energy in the In0.55Al0.45As/Al0.5Ga0.5As structure if the dot size is small enough.
Resumo:
We investigate the electronic structures of the inhomogeneous quantum dots within the framework of the effective mass theory. The results show that the energies of electron and hole states depend sensitively on the relative magnitude 77 of the core radius to the capped quantum dot radius. The spatial distribution of the electrons and holes vary significantly when the ratio eta changes. A quantum-confinement-driven type-II-type-I transition is found in GaAs/AlxGa1-xAs-capped quantum dot structures. The phase diagram is obtained for different capped quantum dot radii. The ground-state exciton binding energy shows a highly nonlinear dependence on the innner structures of inhomogeneous quantum dots, which originates from the redistribution of the electron and hole wave functions.
Resumo:
A dynamic dc voltage band was found emerging from each sawtooth-like branch of the current-voltage characteristics of a doped GaAs/AlAs superlattice in the transition process from static to dynamic electric-field domain formation caused by increasing the sample temperature. As the temperature increases, these dynamic dc voltage bands expand within each sawtooth-like branch, squeeze out the static regions, and join up together to turn the whole plateau into dynamic electric-field domain formation. These results are well explained by a general analysis of stability of the sequential tunneling current in superlattices. (C) 1999 American Institute of Physics. [S0003-6951(99)04443-5].
Resumo:
We investigate the transition from static to dynamic electric field domains (EFDs) in a doped GaAs/AlAs superlattice (SL). We show that a transverse magnetic field and/or the temperature can induce current self-oscillations. This observation can be attributed to the negative differential resistance (NDR) effect. Transverse magnetic field and the temperature can increase the NDR of a doped SL. A large NDR can lead to an unstable EFD in a certain range of d.c. bias. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Radiative transition in delta-doped GaAs superlattices with a weak coupling was investigted at low temperature, The experimental results show that the transitions from both electron ground state and excited state to hole state have been observed, Based on the effective mass approximation theory, the structures of energy band and photoluminescence spectra for the samples used were calculated. Comparing the experiment with theory, a good agreement was abtained.
Resumo:
Photoluminescence spectroscopy has been used to investigate self-assembled InAs islands in InAlAs grown on InP(0 0 1) by molecular beam epitaxy, in correlation with transmission electron microscopy. The nominal deposition of 3.6 monolayers of InAs at 470 degrees C achieves the onset stage of coherent island formation. In addition to one strong emission around 0.74 eV, the sample displaces several emission peaks at 0.87, 0.92. 0.98, and 1.04 eV. Fully developed islands that coexist with semi-finished disk islands account for the multipeak emission. These results provide strong evidence of size quantization effects in InAs islands. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We have observed an extremely narrow absorption spectrum due to bound-to-continuum transition in GaAs/AlxGa1-xAs multiple quantum wells (MQWs). Its linewidth is only about one tenth of the values reported previously. Our calculation indicates that the broadening of the excited state in the continuum has little contribution to the absorption linewidth. We have grown a sample whose MQW region contains two kinds of wells with a minor thickness inhomogeneity. Its resultant absorption linewidth is six times as large as that of homogeneous well sample, which is in good agreement with our theoretical analysis. Thus we can suggest that the wider absorption spectra reported by many authors may be due to the well width inhomogeneity. (C) 1998 American Institute of Physics. [S0003-6951(98)03430-5]
Resumo:
The traditional monostable-bistable transition logic element (MOBILE) structure is usually composed of resonant tunneling diodes (RTD). This letter describes a new type MOBILE structure consisting of single-electron transistors (i.e. SET-MOBILE). The analytical model of single-electron transistors ( SET) has been considered three states (including an excited state) of the discrete quantum energy levels. The simulation results show negative differential conductance (NDC) characteristics in I-DS-V-DS curve. The SET-MOBILE utilizing NDC characteristics can successfully realize the basic logic functions as the RTD-MOBILE.
Resumo:
Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51 % and a stabilized efficiency of 8.01% (AM 1.5, 100 mw/cm(2)) at room temperature. (c) 2006 Published by Elsevier B.V.
Resumo:
Nano-vanadium dioxide thin films were prepared through thermal annealing vanadium oxide thin films deposited by dual ion beam sputtering. The nano-vanadium dioxide thin films changed its state from semiconductor phase to metal phase through heating by homemade system. Four point probe method and Fourier transform infrared spectrum technology were employed to measure and anaylze the electrical and optical semiconductor-to-metal phase transition properties of nano-vanadium dioxide thin films, respectively. The results show that there is an obvious discrepancy between the semiconductor-to-metal phase transition properties of electrical and optical phase transition. The nano-vanadium dioxide thin films' phase transiton temperature defined by electrical phase transiton property is 63 degrees C, higher than that defined by optical phase transiton property at 5 mu m, 60 degrees C; and the temperature width of electrical phase transition duration is also wider than that of optical phase transiton duration. The semiconductor-to-metal phase transiton temperature defined by optical properties increases with increasing wavelength in the region of infrared wave band, and the occuring temperature of phase transiton from semiconductor to metal also increases with wavelength increasing, but the duration temperature width of transition decreases with wavelength increasing. The phase transition properties of nano-vanadium dioxide thin film has obvious relationship with wavelength in infrared wave band. The phase transition properties can be tuned through wavelength in infrared wave band, and the semiconductor-to-metal phase transition properties of nano vanadiium dioxide thin films can be better characterized by electrical property.
Resumo:
The semiconductor-metal transition of vanadium dioxide (VO2) thin films epitaxially grown on C-plane sapphire is studied by depositing Au nanoparticles onto the thermochromic films forming a metal-semiconductor contact, namely, a nano-Au-VO2 junction. It reveals that Au nanoparticles have a marked effect on the reduction in the phase transition temperature of VO2. A process of electron injection in which electrons flow from Au to VO2 due to the lower work function of the metal is believed to be the mechanism. The result may support the Mott-Hubbard phase transition model for VO2.