437 resultados para diode-pumped lasers
Resumo:
用提拉法生长了掺铬、钕的钆镓石榴石(Cr^4+,Nd^3+:GGG)自调Q激光品体。报道了室温下的吸收光谱和荧光光谱特性。分析了Cr离子浓度对光谱性质的影响。比较了Cr^4+:GGG,Nd^3+:GGG和(Cr^4+,Nd^3+):GGG晶体吸收光谱的关系。测量了(Cr^4+,Nd^3+):GGG晶体和Nd^3+:GGG晶体的荧光寿命,它们分别是33μs和250μs。实验表明,(Cr^4+,Nd^3+):GGG晶体是一种非常有潜力的自调Q激光晶体,可以实现大功率激光器的小型化和全固态化。
Resumo:
利用激光二极管(LD)抽运新型Na.Yb共掺CaF2(Na.Yb:CaF2)晶体,获得了1.05μm的自调Q激光输出。利用透射率1%的耦合输出镜,得到最低激光输出的抽运阈值功率仅为70mW。在透射率为2%的输出镜条件下,得到最大输出激光功率为390mw,此时激光的斜度效率达到20%。实验详细记录了自调Q脉冲的周期和宽度随抽运功率的变化关系,随着抽运功率的增加,自调Q脉冲的周期和宽度呈指数衰减。同时,还采用单棱镜进行光谱调谐实验,获得了1036~1059nm的自调Q激光调谐输出。
Resumo:
Passive Q-switching of a diode-pumped Yb:LYSO laser at 1060 nm with a Yb3+ ions-doped CaF2 crystal without the excited-state absorption (ESA) was demonstrated. An average output power of 174 mW with pulse duration of 5.6 mu s and repetition rate of 27 kHz have been obtained under the unoptimized conditions. And the Q-switching conversion efficiency was as high as 51.7%. (c) 2007 Optical Society of America.
Resumo:
文章报道了室温下二极管泵浦Tm:YAP激光器,最大输出功率5.2瓦,波长为1981nm,斜率效率是30%。实验测量800nm左右晶体的吸收谱以及1800nm附近的荧光发射谱。此外,讨论了输出功率随晶体工作温度关系。
Resumo:
采用中频感应提拉法生长了高质量的Tm:Y2SiO5(Tm:YSO)晶体,测定了晶体的晶格常数和分凝系数.运用劳厄照相法确定了单斜晶系Tm:YSO晶体的三个偏振轴〈010〉,D1和D2,在室温下测量了三个偏振轴方向的吸收光谱、荧光光谱和荧光寿命,计算了晶体吸收峰的吸收线宽和吸收截面.研究发现,相对于其他两个偏振轴方向,D1方向在790 nm处出现较强的吸收峰,同时在2μm附近出现了一定强度的发射峰,D1方向的吸收截面较大,荧光寿命较长.Tm:YSO晶体适用于AlGaAs二极管抽运固体激光器,在2μm波段固体激光器的应用上将有很大的发展潜力.
Resumo:
A diode-pumped Nd:GdVO4 laser mode-locked by a semiconductor saturable absorber and output coupler (SESAOC) is passively stabilized to suppress Q-switched mode-locking. A phase mismatched 131130 second-harmonic generation (SHG) crystal is used for passive stabilization. The continuous wave mode-locking (CWML) threshold is reduced and the pulse width is compressed. The pulse width is 6.5 ps as measured at the repetition rate of 128 MHz. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The generation of passively Q-switched mode-locking operation with 100% modulation depth has been observed from a diode-pumped Nd GdVO4 laser with a low temperature In0.25Ga0.75As saturable absorber, which was grown by the metal-organic chemical-vapor deposition technique and acted as saturable absorber as well as output coupler. The repetition rate and pulse duration of the mode-locked pulses concentrated in the Q-switch envelop were 455 MHz and 12 ps, respectively. The average output power was 1.8 W and the slope efficiency was 36%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A diode-pumped passively mode-locked Nd YVO4 laser with a five-mirror folded cavity is presented by using a semiconductor saturable absorber mirror (SESAM). The temperature distribution and thermal lensing in laser medium are numerically analyzed to design a special cavity which can keep the power density on SESAM under its damage threshold. Both the Q-switched and continuous-wave mode-locked operation are experimentally realized. The maximum average output power of 8.94 W with a 9.3 ps pulse width at a repetition rate of 111 MHz is obtained under a pump power of 24 W, correspondingly the optical slope efficiency is 39.2%. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A diode-pumped passively mode-locked YVO4/Nd YVO4 composite crystal green laser with a semiconductor saturable absorber mirror (SESAM) and a intracavity frequency-doubling KTP crystal was realized. The maximum average output power of 2.06 W at 532 nm with a repetition rate of 100 MHz was obtained at a pump power of 15 W, corresponding to optical slop efficiency 17.2%. The 532 nm mode-locked pulse width was estimated to be approximately 18-ps.
Resumo:
Antiphase dynamics has been observed experimentally for the laser modes operation in a laser-diode-pumped Q-switched microchip Yb:YAG laser with GaAs as a saturable absorber in the presence of spatial hole-burning. The Q-switched pulses sequences of two modes at different pump power have been obtained. The experimental results have shown that the pulses sequences displayed classic antiphase dynamics. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Diode-pumped passively mode-locked laser operation of Yb3+,Na+:CaF2 single crystal has been demonstrated for the first time. By using a SESAM ( semiconductor saturable mirror), simultaneous transform-limited 1-ps passively mode-locked pulses, with the repetition rate of 183MHz, were obtained under the self-Q-switched envelope induced by the laser medium. The average output power of 360mW was attained at 1047nm for 3.34W of absorbed power at 976nm, and the corresponding pulse peak power arrived at 27kW, indicating the promising application of Yb3+,Na+-codoped CaF2 crystals in achieving ultra-short pulses and high pulse peak power. (c) 2005 Optical Society of America.
Resumo:
By using a composite semiconductor absorber and an output coupler, we demonstrated a Q-switched and mode-locked diode-pumped microchip Nd:YVO4 laser. With a 350-mu m-thick crystal, the width of the Q-switched envelope was as short as 12 ns; the repetition rate of the mode-locked pulses inside the Q-switched pulse was more than 10 GHz. The average output power was 335 mW at a maximum pump power of 1.6 W. Q-switched envelope widths of 21 and 31 ns were also achieved with crystals 0.7 and 1.0 mm thick, respectively.
Resumo:
A diode-pumped Nd:YVO4 laser passively Q switched by a semiconductor absorber is demonstrated. The Q-switched operation of the laser has an average output power of 135 mW with a 1.6 W incident pump power. The minimum pulse width is measured to be about 8.3 ns with a repetition rate of 2 MHz. To our knowledge, this is the first demonstration of a solid-state laser passively Q-switched by such a composite semiconductor absorber. (c) 2006 Optical Society of America.
Resumo:
We reported an efficient diode pumped Nd ! YVO, 1 064 nm laser passively mode-locked and Q-switched by a semiconductor saturable absorber mirror(SESAM). At the incident pump power of 7. 5 W, 2. 81 W average output power was obtained during stable CW mode locking with a repetition rate of 111 MHz. The optical conversion efficiency was 37. 5% , and the slope efficiency was 39%. So far as we know, this is the highest optical-optical conversion efficiency with a SESAM at home.
Resumo:
A diode-pumped CW mode-locked Nd