142 resultados para Luitpold, margrave of Bavaria, d. 907.
Resumo:
GaSb 1 mu m-thick layers were grown by molecular beam epitaxy on GaAs (001). The effects of the growth conditions on the crystalline quality, surface morphology, electrical properties and optical properties were studied by double crystalline x-ray diffraction, atomic force microscopy, Hall measurement and photoluminescence spectroscopy, respectively. It was found that the surface roughness and hole mobility are highly dependent on the antimony-to-gallium flux ratios and growth temperatures. The crystalline quality, electrical properties and optical properties of GaSb layers were also studied as functions of growth rate, and it was found that a suitably low growth rate is beneficial for the crystalline quality and electrical and optical properties. Better crystal quality GaSb layers with a minimum root mean square surface roughness of 0.1 nm and good optical properties were obtained at a growth rate of 0.25 mu m h(-1).
Resumo:
We have investigated the growth of AlGaN epilayers on a sapphire substrate by metalorganic chemical vapour deposition using various low-temperature ( LT) AlN buffer thicknesses. Combined scanning electron microscopy and cathodoluminescence investigations reveal the correlation between the surface morphology and optical properties of AlGaN films in a microscopic scale. It is found that the suitable thickness of the LT AlN buffer for high quality AlGaN growth is around 20 nm. The Al compositional inhomogeneity of the AlGaN epilayer is attributed to the low lateral mobility of Al adatoms on the growing surface.
Resumo:
High-Al-content InxAlyGa1-x-yN (x = 1-10%, y = 34-45%) quaternary alloys were grown on sapphire by radio-frequency plasma-excited molecular beam epitaxy. Rutherford back-scattering spectrometry, high resolution x-ray diffraction and cathodoluminescence were used to characterize the InAlGaN alloys. The experimental results show that InAlGaN with an appropriate Al/In ratio (near 4.7, which is a lattice-match to the GaN under-layer) has better crystal and optical quality than the InAlGaN alloys whose Al/In ratios are far from 4.7. Some cracks and V-defects occur in high-Al/In-ratio InAlGaN alloys. In the CL image, the cracks and V-defect regions are the emission-enhanced regions.
Resumo:
Fabrication of InGaAlAs MQW buried heterostructure (BH) lasers by narrow stripe selective MOVPE is demonstrated in this paper. High quality InGaAlAs MQWs were first grown by narrow stripe selective MOVPE without any etching process and assessed by analysing the cross sections and PL spectrums of the InGaAlAs MQWs. Furthermore, BHs were fabricated for the InGaAlAs MQW lasers by a developed unselective regrowth method, instead of conventional selective regrowth. The InGaAlAs MQW BH lasers exhibit good device characteristics, with a high internal differential quantum efficiency of 85% and a low internal loss of 6.7 cm(-1). Meanwhile, narrow divergence angles of the far field pattern are obtained for the fabricated lasers.
Resumo:
A simple method for estimating the frequency responses of directly modulated lasers from optical spectra is presented. The frequency-modulation index and intensity-modulation index of a distributed feedback laser can be obtained through the optical spectrum analyses. The main advantage is that the measurement setup is very simple. Only a microwave source and an optical spectrum analyser are needed and there is no need to use a calibrated broadband photodetector. Experiment shows that the proposed method is as accurate as the swept frequency method using a network analyzer and is applicable to a wide range of modulation powers.
Resumo:
The electronic structure and electron g factors of HgTe quantum dots are investigated, in the framework of the eight-band effective-mass approximation. It is found that the electron states of quantum spheres have aspheric properties due to the interaction between the conduction band and valence band. The highest hole states are S (l = 0) states, when the radius is smaller than 9.4 nm. the same as the lowest electron states. Thus strong luminescence from H-Te quantum dots with radius smaller than 9.4 nm has been observed (Rogach et al 2001 Phys. Statits Solidi b 224 153). The bandgap of H-Te quantum spheres is calculated and compared with earlier experimental results (Harrison et al 2000 Pure Appl. Chem. 72 295). Due to the quantum confinement effect, the bandgap of the small HgTe quantum spheres is positive. The electron g factors of HgTe quantum spheres decrease with increasing radius and are nearly 2 when the radius is very small. The electron g factors of HgTe quantum ellipsoids are also investigated. We found that as some of the three dimensions increase, the electron g factors decrease. The more the dimensions increase, the more the g factors decrease. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension.
Resumo:
High quality ZnO films have been successfully grown on a Si (100) substrate by metal organic chemical vapour deposition with a gamma-Al2O3 buffer. The crystal structure, surface morphology and optical properties of the ZnO films were characterized by x-ray diffraction, Raman spectroscopy, atomic force microscopy and photoluminescence (PL) spectroscopy. The propel-ties of the films with the Al2O3 buffer were improved in comparison with those of as-grown ZnO films. It is shown that the ZnO films with the gamma-Al2O3 buffer grown on Si (100) substrates have a highly-preferential c-axis (0002) orientation, a narrow (0002) peak, smooth surface morphology and better PL spectral properties. This demonstrates that the use of gamma-Al2O3/Si as a ZnO substrate is beneficial for reducing the residual stress for further growth of ZnO films, compared with the growth on bulk Si substrates.
Resumo:
The structural evolution and temperature dependence of the Schottky barrier heights of Pt contacts on n-GaN epilayer at various annealing temperatures were investigated extensively by Rutherford backscattering spectrometry, x-ray diffraction measurements, Auger electron spectroscopy, scanning electron microscopy and current-voltage measurements. The temperature dependence of the Schottky barrier heights may be attributed to changes of surface morphology of Pt films on the surface and variation of nonstoichiometric defects at the interface vicinity. Experimental results indicated the degradation of Pt contacts on n-GaN above 600 degreesC.
Resumo:
The lateral epitaxial overgrowth of GaN was carried out by low-pressure metalorganic chemical vapor deposition, and the cross section shape of the stripes was characterized by scanning electron microscopy. Inclined {11-2n} facets (n approximate to 1-2.5) were observed in the initial growth, and they changed gradually into the vertical {11-20} sidewalls in accordance with the process of the lateral overgrowth. A model was proposed utilizing diffusion equations and boundary conditions to simulate the concentration of the Ga species constituent throughout the concentration boundary layer. Solutions to these equations are found using the two-dimensional, finite element method. We suggest that the observed evolution of sidewall facets results from the variation of the local V/III ratio during the process of lateral overgrowth induced by the lateral supply of the Ga species from the SiNx mask regions to the growing GaN regions.
Resumo:
The Schottky behaviour of Ni/Au contact on n-GaN was investigated under various annealing conditions by current-voltage (I-V) measurements. A non-linear fitting method was used to extract the contact parameters from the I-V characteristic curves. Experimental results indicate that high quality Schottky contact with a barrier height and ideality factor of 0.86 +/- 0.02 eV and 1.19 +/- 0.02 eV, respectively, can be obtained under 5 min annealing at 600degreesC in N-2 ambience.
Resumo:
In order to optimize the loading of 3-(1, 1-dicyanothenyl)-1-phenyl-4, 5-dihydro-1H-pryazole (DCNP) in polyetherketone (PEK-c) guest-host polymer films, ten kinds of DCNP/PEK-c thin films, in which the weight per cent of DCNP changes from 5 to 50, were prepared. Their second-order nonlinear optical coefficients chi(33)((2)) at 1064 nm were measured by Using Maker fringe method after poling under the optimal poling condition. Their optical waveguide transmission losses were measured at 632.8 nm. Optimal weight per cent of the chromophore for the DCNP/PEK-c guest-host polymer system has been determined as about 20 for use in the integrated optical devices.
Resumo:
We performed Raman scattering investigations on low-temperature-grown (LTG) films of GaAs that had been lifted off the GaAs substrate. The Raman measurements unambiguously show the effects of excess arsenic on phonon scattering from LTG films of GaAs. The larger downwards shift of the LO phonon frequency for unannealed free-standing films is explained by invoking the elimination of mismatch strain. The Raman signal due to precipitates of elemental arsenic in the annealed GaAs : As films is determined. It is confirmed that the arsenic clusters formed by rapid thermal annealing are mainly amorphous, giving rise a broad Raman peak in the range 180-260 cm(-1).
Resumo:
Photoluminescence properties of SiGe/Si single wells with fluctuating structural parameters are studied. Four SiGe/Si single wells have been grown on Si(001) at 750 degrees C by disilane and solid Ge molecular beam epitaxy with varied disilane cracking-temperatures. Intense NP and TO-phonon replicas are detected up to 70 K in the photoluminescence spectra and the activation energy of the thermal quenching of the photoluminescence is 28 +/- 4 meV. The high growth temperature and purposeful introduction of fluctuation of structural parameters may be responsible for the improvement of the thermal quenching property.
Resumo:
We have systematically studied the temperature dependent photoluminescence of a self-assembled In(Ga)As/GaAs quantum dot (QD) system with different areal densities from similar to 10(9) to similar to 10(11) cm(-2). Different carrier channels are revealed experimentally and confirmed theoretically via a modified carrier equation model considering a new carrier transfer channel, i.e. continuum states ( CS). The wetting layer is demonstrated to be the carrier quenching channel for the low-density QDs but the carrier transfer channel for the high-density QDs. In particular, for the InGaAs/GaAs QDs with a medium density of similar to 10(10) cm(-2), the CS is verified to be an additional carrier transfer channel in the low temperature regime of 10-60 K, which is studied in detail via our models. The possible carrier channels that act on different temperature regimes are further discussed, and it is demonstrated that density is not a crucial factor in determining the carrier lateral coupling strength.