168 resultados para Lateral bipolar junction transistors
Resumo:
It is reported that when a light beam travels through a slab of left-handed medium in the air, the lateral shift of the transmitted beam can be negative as well as positive. The necessary condition for the lateral shift to be positive is given. The validity of the stationary-phase approach is demonstrated by numerical simulations for a Gaussian-shaped beam. A restriction to the slab's thickness is provided that is necessary for the beam to retain its profile in the traveling. It is shown that the lateral shift of the reflected beam is equal to that of the transmitted beam in the symmetric configuration.
Resumo:
The mechanism of beam splitting and principle of wide-field-of-view compensation of modified Savart polariscope in the wide-field-of-view polarization interference imaging spectrometer (WPIIS) are analyzed and discussed. Formulas for the lateral displacement and optical path difference (OPD) produced by the modified Savart polariscope are derived by ray-tracing method. The theoretical and practical guidance is thereby provided for the study, design, modulation, experiment and engineering of the polarization interference imaging spectrometers and other birefringent Fourier-transform spectrometers based on Savart polariscopes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A theoretical study is presented of the lateral confinement potential (CP) in the very narrow mesa channels fabricated in the conventional two-dimensional (2D) electron gas in GaAs-AlxGa1-xAs heterostructures. The ID electronic structures are calculated in the framework of the confinement potential: V(x) = m* omega0(2)x2/2 for Absolute value of x
Resumo:
The electronic structures of quantum wires formed by lateral strain are studied in the framework of the effective-mass envelope-function method. The hole energy levels, wave functions, and optical transition matrix elements are calculated for the real quantum-wire structure, and the results are compared with experiment. It is found that one-dimensional confinement effects exist for both electronic and hole states related to the n (001) = 1 state. The lateral strained confinement causes luminescence-peak redshifts and polarization anisotropy, and the anisotropy is more noticeable than that in the unstrained case. The variation of hole energy levels with well widths in the [110] and [001] directions and wave vector along the [110BAR] direction are also obtained.
Resumo:
The effect of metastable defects caused by light soaking and carrier injection on the transport of carriers in undoped a-Si:H has been investigated by a junction recovery technique. The experiments show that after light soaking or carrier injection the product of mu-p-tau-p decreases, but no detectable change in the distribution of shallow valence band tail states was found.
Resumo:
In this work we investigate the lateral periodicity of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of X-ray scattering techniques. The multilayers were grown by metalorganic Vapour phase epitaxy on (001)GaAs substrates, which were intentionally off-oriented towards the [011]-direction. The substrate off-orientation and the strain distribution was found to affect the structural properties of the superlattices inducing the generation of laterally ordered macrosteps. Several high-resolution triple-crystal reciprocal space maps, which were recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction and contour maps of the specular reflected beam collected in the vicinity of the (000) reciprocal lattice point, are reported and discussed. The reciprocal space maps clearly show a two-dimensional periodicity of the X-ray peak intensity distribution which can be ascribed to the superlattice periodicity in the direction of the surface normal and to a lateral periodicity in a crystallographic direction coinciding with the miscut orientation. The distribution and correlation of the vertical as well as of the lateral interface roughness was investigated by specular reflectivity and diffuse scattering measurements. Our results show that the morphology of the roughness is influenced by the off-orientation angle and can be described by a 2-dimensional waviness.
Resumo:
A theoretical investigation of ballistic electron transport in a quantum wire with soft wall confinement is presented. A general method of the electron transmission calculation is proposed for structures with complicated geometries. The effects of the lateral guiding potential on ballistic transport are investigated using three soft wall confinement models and the results are compared with those obtained from the hard wall confinement approximation. It is shown that the calculated transmission coefficients are notably dependent on the lateral confining potential especially when the incident electron energy is larger than the energy of the second transverse mode. It is found that the transmission profile obtained from soft wall confinement models exhibits simpler resonance structures than that obtained from the hard wall confinement approximation. Our results suggest that only in the single-channel regime the hard wall confinement approximation can give reasonable results.
Resumo:
Three different types of GaAs metal-semiconductor field effect transistors (MESFET) by employing ion implantation, molecular beam epitaxy (MBE) and low-temperature MBE (LT MBE) techniques respectively were fabricated and studied in detail. The backgating (sidegating) measurement in the dark and in the light were carried out. For the LT MBE-GaAs buffered MESFETs, the output resistance R(d) and the peak transconductance g(m) were measured to be above 50 k Omega and 140 mS/mm, respectively, and the backgating and light sensitivity were eliminated. A theoretical model describing the light sensitivity in these kinds of devices is given. and good agreement with experimental data is reached.
Resumo:
Boron-doped hydrogenated silicon films with different gaseous doping ratios (B_2H_6/SiH_4) were deposited in a plasma-enhanced chemical vapor deposition (PECVD) system. The microstructure of the films was investigated by atomic force microscopy (AFM) and Raman scattering spectroscopy. The electrical properties of the films were characterized by their room temperature electrical conductivity (σ) and the activation energy (E_a). The results show that with an increasing gaseous doping ratio, the silicon films transfer from a microcrystalline to an amorphous phase, and corresponding changes in the electrical properties were observed. The thin boron-doped silicon layers were fabricated as recombination layers in tunnel junctions. The measurements of the Ⅰ-Ⅴ characteristics and the transparency spectra of the junctions indicate that the best gaseous doping ratio of the recombination layer is 0.04, and the film deposited under that condition is amorphous silicon with a small amount of crystallites embedded in it. The junction with such a recombination layer has a small resistance, a nearly ohmic contact, and a negligible optical absorption.
Resumo:
This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator,which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.