281 resultados para GaMnAs layer
Resumo:
Coatings with layer structures of Ag/glass, Ag/Cr/glass, and Ag/Cr-Ag/Cr/glass deposited with magnetron sputtering are investigated. The results indicate that the performance for reflectance, hardness, adherence, and humidity durability of the silver coatings with Ag/Cr/glass and Ag/Cr-Ag/Cr/glass structures are better than pure silver film. In addition, the silver coatings with an Ag/Cr-Ag/glass structure present more advantages than that of the Ag/Cr/glass. Reasons are analyzed accordingly. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
ZnO/MgF2/ZnO sandwich structure films were fabricated. The effects of a buffer layer on structure and optical properties of ZnO films were investigated by X-ray diffraction, photoluminescence, optical transmittance and absorption measurements. Measurement results showed that the buffer layer had the effects of improving the quality of ZnO films and releasing the residual stresses in the films. The near-band edge emissions of ZnO films deposited on the MgF2 buffer layer were significantly enhanced compared with those deposited on bare substrate due to the smaller lattice mismatch between MgF2 and ZnO than that between fused silica and ZnO. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A simple and practical model is used to analyse the influence of substrate surface defect on the optical characteristics of a single-layer coating. A single-layer coating is prepared and its optical properties are fitted. Some explanations for the origin of the transition layer are presented. It is concluded that there is a transition layer forming between the substrate and coating, which is attributed to substrate surface defects, and its refractive index change is nearly of linearity.
Resumo:
Used in chirped-pulse amplification system and based on multi-layer thin film stack, pulse compressor gratings (PCG) are etched by ion-beam and holographic techniques. Diffraction efficiency and laser-induced damage threshold rely on the structural parameters of gratings. On the other hand, they depend greatly on the design of multi-layer. A theoretic design is given for dielectric multi-layer, which is exposed at 413.1 nm and used at 1053 nm. The influences of coating design on optical characters are described in detail. The analysis shows that a coating stack of H3L (H2L) (boolean AND) 9H0.5L2.01H meets the specifications of PCG well. And there is good agreement of transmission between experimental and the theoretic design. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
We investigate mechanisms of laser induced damage thresholds (LIDTs) of multi-layer dielectric gratings (AIDG,). It is found that the laser damage thresholds of MDGs and unstructured dielectric multi-layer coatings (the substrate of MDG) are 3.15J/cm(2) and 9.32 J/cm(2), respectively, at 1064nm (12ns) with the Littrow angle 51.2 degrees and the TEM00 mode. The laser-induced damage mechanism of multi-layer dielectric is presented with the analysis of the following factors: The dominant factor is the pollution on the corrugated surface, which is induced by the complex manufacture process of multi-layer dielectric gratings; another is the electric field distribution along the corrugated surface. The third reason is due to the reduction in stoichiometry of oxide films, resulting from the manufacture process of etching.
Resumo:
A series of ZnO thin films were deposited on ZnO buffer layers by DC reactive magnetron sputtering. The buffer layer thickness determination of microstructure and optical properties of ZnO films was investigated by X-ray diffraction (XRD), photoluminescence (PL), optical transmittance and absorption measurements. XRD results revealed that the stress of ZnO thin films varied with the buffer layer thickness. With the increase of buffer layer thickness, the band gap edge shifted toward longer wavelength. The near-band-edge (NBE) emission intensity of ZnO films deposited on ZnO buffer layer also varied with the increase of thickness due to the spatial confinement increasing the Coulomb interaction between electrons and holes. The PL measurement showed that the optimum thickness of the ZnO buffer layer was around 12 nm. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Laser induced damage threshold (LIDT) of multi-layer dielectric used in pulse compressor gratings (PCG) was investigated. The sample was prepared by e-beam evaporation (EBE). LIDT was detected following ISO standard 11254-1.2. It was found that LIDTs of normal and 51.2 deg. incidence (transverse electric (TE) mode) were 14.14 and 9.31 J/cm2, respectively. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was pit-concave-plat structure for normal incidence, while it was pit structure for 51.2 deg. incidence with TE mode. The electric field distribution was calculated to illuminate the difference of LIDT between the two incident cases.
Resumo:
Some results of an investigation on the layer thickness uniformity of glancing angle deposition are presented. A zirconia monolayer has been deposited by glancing angle deposition to analyze the layer thickness uniformity. The experimental results indicate that the thickness variation over the substrate is less than 0. 1%, which is considered as good uniformity. It is found that the non-uniformity of experimental results is larger than that of the theoretical results. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Multi-layer dielectric (MLD) gratings for pulse compressors in high-energy laser systems should provide high diffraction efficiency as well as high laser induced damage thresholds (LIDT). Nonuniform optical near-field distribution is one of the important factors to limit their damage resistant capabilities. Electric field distributions in the gratings and multi-layer film region are analyzed by using Fourier modal method. Optimization of peak electric field in the gratings ridge is performed with a merit function, including both diffraction efficiency and electric field enhancement when the top layer material is HfO2 and SiO2, respectively. A set of optimized gratings parameters is obtained for each structure, which reduce the peak electric field within the gratings ridge to being respective 1.39 and 1.84 times the value of incident light respectively. Finally, we also discuss the effects of gratings refractive index, gratings sidewall angle and incident angle on peak electric field in the gratings ridge. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
HfO2 single layers, 800 run high-reflective (HR) coating, and 1064 ran HR coating were prepared by electron-beam evaporation. The laser-induced damage thresholds (LIDTs) and damage morphologies of these samples were investigated with single-pulse femtosecond and nanosecond lasers. It is found that the LIDT of the HfO2 single layer is higher than the HfO2-SiO2 HR coating in the femtosecond regime, while the situation is opposite in the nanosecond regime. Different damage mechanisms are applied to study this phenomenon. Damage morphologies of all samples due to different laser irradiations are displayed. (c) 2007 Optical Society of America.
Resumo:
The high reflection (HR) mirror composed of dielectric stacks with excellent spectrum characteristics and high damage resistant ability is critical for fabricating multilayer dielectric (MLD) grating for pulse compressor. The selection of the SiO2 material as the top layer of the HR mirror for grating fabrication is beneficial for improving the laser-induced damage threshold of MLD grating as well as minimizing the standing-wave effect in the photoresist during the exposure process. Based on an (HLL) H-9 design comprising quarter-waves of HfO2 ( H) and half-waves of SiO2 ( L), we obtain an optimal design of the HR mirror for MLD grating, the SiO2 top layer of which is optimized with a merit function including both the diffraction efficiency of the MLD grating and the electric field enhancement in the grating. Dependence of the performance of the MLD grating on the fabrication error of the dielectric mirror is analysed in detail. The HR mirror is also fabricated by E-beam evaporation, which shows good spectral characteristics at the exposure wavelength of 413 nm and at the operation wavelength of 1053 nm and an average damage threshold of 10 J cm(-2) for a 12 ns pulse.
Resumo:
Two kinds of HfO2/SiO2 800 nm high-reflective (HR) coatings, with and without SiO2 protective layer were deposited by electron beam evaporation. Laser-induced damage thresholds (LIDT) were measured for all samples with femtosecond laser pulses. The surface morphologies and the depth information of all samples were observed by Leica optical microscopy and WYKO surface profiler, respectively. It is found that SiO2 protective layer had no positive effect on improving the LIDT of HR coating. A simple model including the conduction band electron production via multiphoton ionization and impact ionization is used to explain this phenomenon. Theoretical calculations show that the damage occurs first in the SiO2 protective layer for HfO2/SiO2 HR coating with SiO2 protective layer. The relation of LIDT for two kinds of HfO2/SiO2 HR coatings in calculation agrees with the experiment result. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Thin-film design used to fabricate multi-layer dielectric (MLD) gratings should provide high transmittance during holography exposure, high reflectance at use wavelength and sufficient manufacturing latitude of the grating design making the MLD grating achieve both high diffraction efficiency and low electric field enhancement. Based on a (HLL)H-9 design comprising of quarter-waves of high-index material and half-waves of low-index material, we obtain an optimum MLD coating meeting these requirements by inserting a matching layer being half a quarter-wave of Al2O3 between the initial design and an optimized HfO2 top layer. The optimized MLD coatings exhibits a low reflectance of 0.017% under photoresist at the exposure angle of 17.8 degrees for 413 nm light and a high reflectance of 99.61% under air at the use angle of 51.2 degrees for 1053 nm light. Numerical calculation of intensity distribution in the photoresist coated on the MLD film during exposure shows that standing-wave patterns are greatly minimized and thus simulation profile of photoresist gratings after development demonstrates smoother shapes with lower roughness. Furthermore, a MLD gratings with grooves etched into the top layer of this MLD coating provides a high diffraction efficiency of 99.5% and a low electric field enhancement ratio of 1.53. This thin-film design shows perfect performances and can be easily fabricated by e-beam evaporation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A study on the layer structure of W/C multilayers deposited by magnetron sputtering is reported. In the study, soft x-ray resonant reflectivity and hard x-ray grazing incidence reflectivity of the W/C multilayers were measured. The imperfections at the interface such as interdiffusion and formation of compounds were dealt with by two methods. On analyzing the experimental results, we found that the incorporation of an interlayer was a more suitable method than the traditional statistical method to describe the layer structure of a W/C system we fabricated. The optical constants of each layer at a wavelength of 4.48 nm were also obtained from the analysis. Copyright (C) 2008 John Wiley & Sons, Ltd.