221 resultados para Force distributions
Resumo:
A buoy as an offshore structure is often placed over a convex such as a caisson or a submerged island. The hydrodynamic fluid/solid interaction becomes more complex due to the convex compared with that on the flat. Both the buoy and the convex are idealized as vertical cylinders. Linear potential theory is used to investigate the response amplitude and the hydrodynamic force for a buoy over a convex due to diffraction and radiation in water of finite depth. These are derived from the total velocity potential. A set of theoretical added mass, damping coefficient, and exciting force expressions have been proposed. Analytical results of the response amplitude and hydrodynamic force are given. Finally, the numerical results show that the effect of the convex on the response amplitude and hydrodynamic force for the buoy is ignored if the size of the convex is relatively smaller.
Resumo:
The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incidence XRD, and reciprocal space mapping (RSM). It is confirmed that the measurement of (204) reflection allows a rapid access to estimate the composition without considering the influence of biaxial strain. The two-dimensional RSM checks composition and degree of strain relaxation jointly, revealing an inhomogeneous strain distribution profile along the growth direction. As the film thickness increases from 100 nm to 450 nm, the strain status of InGaN films gradually transfers from almost fully strained to fully relaxed state and then more in atoms incorporate into the film, while the near-interface region of InGaN films remains pseudomorphic to GaN.
Resumo:
The size and distribution of surface features of porous silicon layers have been investigated by scanning tunneling and atomic force microscopy. Pores and hillocks down to 1-2 nm size were observed, with their shape and distribution on the sample surface being influenced by crystallographic effects. The local density of electronic states show a strong increase above 2 eV, in agreement with recent theoretical predictions.
Resumo:
It is often important to be able to estimate the concentration of dopant atoms incorporated into InP crystals grown from InP melt of given composition. In this paper we present a simple parameter (G) to revise the commonly used effective distribution coefficient (k(eff)) and the Scheil equation. The results obtained for various dopants and different initial concentrations in LEC-grown InP ingots are discussed. It is shown that the revised dopant concentration curves tally with the real distributions.
Resumo:
国家自然科学基金
Resumo:
Two important factors that influence the force accuracy of the electromagnet-based nano-indenters but have not yet attracted much attention are analyzed, and a more reasonable way to estimate the force accuracy is presented in this paper. MTS Nano Indenter (R), with the characteristics of a coil suspended in a uniform magnetic field by two sets of springs acting as an actuator and force measuring unit, is used as an example. One of the two factors is the uniformity of the magnetic field. The other is the stiffness of the supporting spring. Consequently, the practical force accuracy varies considerably from test to test because it firmly depends on the working position of the coil and the displacement stroke. A reasonable estimated accuracy value is of the order of 10 degrees mu N for typical indentation tests with a 10(2) nm indentation depth or a 10 degrees mN test force. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Particle velocity distribution in a blowing sand cloud is a reflection of saltation movement of many particles. Numerical analysis is performed for particle velocity distribution with a discrete particle model. The probability distributions of resultant particle velocity in the impact-entrainment process, particle horizontal and vertical velocities at different heights and the vertical velocity of ascending particles are analyzed. The probability distributions of resultant impact and lift-off velocities of saltating particles can be expressed by a log-normal function, and that of impact angle comply with an exponential function. The probability distribution of particle horizontal and vertical velocities at different heights shows a typical single-peak pattern. In the lower part of saltation layer, the particle horizontal velocity distribution is positively skewed. Further analysis shows that the probability density function of the vertical velocity of ascending particles is similar to the right-hand part of a normal distribution function, and a general equation is acquired for the probability density function of non-dimensional vertical velocity of ascending particles which is independent of diameter of saltating particles, wind strength and height. These distributions in the present numerical analysis are consistent with reported experimental results. The present investigation is important for understanding the saltation state in wind-blown sand movement. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper considers the lift forces acting on a pipeline with a small gap between the pipeline and the plane bottom or scoring bottom. A more reasonable fluid force on the pipeline has been obtained by applying the knowledge of modified potential theory (MPT), which includes the influences of the downstream wake. By finite element method, an iteration procedure is used to solve problems of the nonlinear fluid-structure interaction. Comparing the deflection and the stress distributions with the difference sea bottoms, the failure patterns of a spanning pipeline have been discussed. The results are essential for engineers to assess pipeline stability.
Resumo:
A modelling study is performed to compare the plasma °ow and heat transfer char- acteristics of low-power arc-heated thrusters (arcjets) for three di®erent propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equa- tions, which take into account the e®ects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, veloc- ity and Mach number distributions calculated within the thruster nozzle obtained with di®erent propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the °ow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appear- ing near the cathode tip; the °ow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant °ows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, speci¯c enthalpies and thermal conductivities, are di®erent, there are appreciable di®er- ences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest speci¯c impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results.