337 resultados para Cementing oil wells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherent tunnelling is studied in framework of the effective mass approximation for an asymmetric coupled quantum well. The Hartree potential due to the electron-electron interaction is considered in our calculation. The effects of the longitudinal and transverse magnetic field on coherent tunnelling characteristics are discussed. It has been found that the external field plays an important role in modulating the electron states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The InGaNAs(Sb)/(GaNAs)/GaAs quantum wells (QWs) emitting at 1.3-1.55 mu m have been grown by molecular beam epitaxy (MBE). The parameters of the radio frequency (RF) such as RF power and flow rate are optimized to reduce the damages from the ions or energetic species. The growth temperature is carefully controlled to prevent the phase segregation and strain relaxation. The effects of Sb on the wavelength and quality are investigated. The GaNAs barrier is used to extend the wavelength and reduce the strain. A 1.5865 mu m InGaNAs(Sb)/GaNAs SQW edge emitting laser lasing at room temperature at continuous wave operation mode is demonstrated. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared absorption in GaAs/AlxGa1-xAs multiple quantum wells is investigated using a polarizer. Two main peaks, with wave numbers 723 and 1092 cm(-1), are observed. The peak with wave number 1092 cm(-1) corresponds to the 0 -> 1 intersubband transition, while the other one corresponds to the intrasubband transition. The polarized absorbance is one order of magnitude higher than the unpolarized one. The authors attribute the intrasubband transition to the plasma oscillation in the quantum wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metamorphic InGaAs quantum well structures grown on GaAs reveal strong light emission at 1.3-1.6 mu m, smooth surface with an average roughness below 2 nm. and good rectifying I-V characteristics. Dark line defects are found in the QW Post growth thermal annealing further improves the luminescence efficiency but does not remove those dark line defects. Some challenges of epitaxial growth using this method for laser applications are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Faraday rotation of an exciton in a GaAs quantum well (QW) embedded in a microcavity is investigated theoretically. The authors find that the Faraday rotation is enhanced remarkably by the microcavity, with a magnitude about two orders of magnitude larger than that of a single QW without microcavity. The Faraday rotation can be tuned by changing the incident angle of the pump and probe lights, or by varying the temperature or an external electric field. With an appropriate detuning between the cavity mode of the pump and probe lights, the Faraday rotation spectrum displays a strongly asymmetric line shape, which can easily be detected experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wurtzite ZnO/MgO superlattices were successfully grown on Si (001) substrates at 750 degrees C using radio-frequency reactive magnetron sputtering method. X-ray reflection and diffraction, electronic probe and photoluminescence analysis were used to characterize the multiple quantum wells (MQWs). The results showed the periodic layer thickness of the MQWs to be 1.85 to 22.3 nm. The blueshift induced by quantum confinement was observed. Least square fitting method was used to deduce the zero phonon energy of the exciton from the room-temperature photoluminescence. It was found that the MgO barrier layers has a much larger offset than ZnMgO. The fluctuation of periodic layer thickness of the MQWs was suggested to be a possible reason causing the photoluminescence spectrum broadening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low indium content InGaN/AlGaN multiple quantum wells (MQWs) have been grown on Si(111) substrate by metal-organic chemical vapour deposition (MOCVD). A new method of using an isoelectronic indium-doped AlGaN barrier has been found to be very effective in improving the crystalline quality and interfacial abruptness of InGaN quantum well layers. We grew five periods of In0.06Ga0.94N/Al0.20Ga0.80N:In MQWs with In-doped barrier layers and obtained strong near-ultraviolet (UV) emission (similar to 400 nm) at room temperature. An In-doped AlGaN barrier improves the room-temperature PL intensity of InGaN/AlGaN MQWs, making it a candidate barrier for a near-UV source on Si substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report a combined experimental and theoretical study on the luminescence dynamics of localized carriers in disordered InGaN/GaN quantum wells. The luminescence intensity of localized carriers is found to exhibit an unusual non-exponential decay. Adopting a new model taking the radiative recombination and phonon-assisted hopping transition between different localized states into account, which was recently developed by Rubel et al., the non-exponential decay behavior of the carriers can be quantitatively interpreted. Combining with precise structure characterization, the theoretical simulations show that the localization length of localized carriers is a key parameter governing their luminescence decay dynamics. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature dependence of optical properties of GaInNAs/GaAs quantum wells (QWs) has been studied by photoluminescence (PL) and time-resolved PL. A rapid PL quenching is observed even at very low temperature and is of the excitation power dependence. These results strongly suggest that the non-radiative recombination process plays a very important role at low temperature. In the TRPL measurement the shape of the PL decay curve shows significant difference under different excitation powers. It is attributed to the different involvement of non-radiative recombination in the overall recombination process. The TRPL data are well fitted with the rate equation involving both the radiative and non-radiative recombination. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find that the Rashba spin splitting is intrinsically a nonlinear function of the momentum, and the linear Rashba model may overestimate it significantly, especially in narrow-gap semiconductors. A nonlinear Rashba model is proposed, which is in good agreement with the numerical results from the eight-band k center dot p theory. Using this model, we find pronounced suppression of the D'yakonov-Perel' spin relaxation rate at large electron densities, and a nonmonotonic dependence of the resonance peak position of the electron spin lifetime on the electron density in [111]-oriented quantum wells, both in qualitative disagreement with the predictions of the linear Rashba model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A resonant-cavity enhanced reflective optical modulator is designed and frabricated, with three groups of three highly strained InGaAS/GaAs quantum wells in the cavity, for the low voltage and high contrast ratio operation. The quantum wells are positioned in antinodes of the optical standing wave. The modulator is grown in a single growth step in an molecular beam epitaxy system, using GaAs/AIAs distributed Bragg reflectors as both the top and bottom mirrors. Results show that the reflection device has a modulation extinction of 3 dB at -4.5 V bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonradiative recombination effect on carrier dynamics in GaInNAs/GaAs quantum wells is studied by time-resolved photoluminescence (TRPL) and polarization-dependent TRPL at various excitation intensities. It is found that both recombination dynamics and spin relaxation dynamics strongly depend on the excitation intensity. Under moderate excitation intensities the PL decay curves exhibit unusual non-exponential behaviour. This result is well stimulated by a rate equation involving both the radiative and non-radiative recombinations via the introduction of a new parameter of the effective concentration of nonradiative recombination centres in the rate equation. In the spin dynamics study, the spin relaxation also shows strong excitation power dependence. Under the high excitation power an increase of spin polarization degree with time is observed. This new finding provides a useful hint that the spin process can be controlled by excitation power in GaInNAs systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of rapid thermal annealing on InGaNAs/GaAs quantum wells. At optimized annealing temperatures and times, the greatest enhancement of the photoluminescence intensity is obtained by a special two-step annealing process. To identify the mechanism affecting the material quality during the rapid thermal annealing, differential temperature analysis is applied, and temperature- and power-dependent photoluminescence is carried out on the samples annealed under different conditions. Our experiment reveals that some composition redistribution or other related ordering process may occur in the quantum-well layer during annealing. Annealing at a lower temperature for a long time primarily can remove defects and dislocations while annealing at a higher temperature for a short time primarily homogenizes the composition in the quantum wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exciton g factors in GaAs-based quantum wells (QWs) were evaluated by reflectance difference spectroscopy (RDS) under a weak magnetic field. The well-width dependence of the n=1 heavy-hole exciton (1H1E) g factor agrees well with the reported results, demonstrating RDS as a sensitive tool for detection of g factor. By comparison, the n=1 light-hole exciton g factor increases with the well width, and shows a larger value than that of 1H1E. In a 20-nm-wide Al0.02Ga0.98As/AlAs multiple QW sample, the g factors of up to ten excitons are obtained, and the higher-lying exciton g factors are found to be one order larger than that of the 1H1E exciton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the Huang-Zhu model [K. Huang and B.-F. Zhu, Phys. Rev. B 38, 13377 (1988)] for the optical phonons and associated carrier-phonon interactions in semiconductor superlattices, the effects of longitudinal electric field on the energy-loss rates (ELRs) of hot carriers as well as on the hot-phonon effect (HPE) in GaAs/AlAs quantum wells (QWs) are studied systematically. Contributions of various bulklike and interface phonons to the hot-carrier relaxation are compared in detail, and comprehensively analyzed in relation to the intrasubband and intersubband scatterings for quantum cascade lasers. Due to the broken parity of the electron (hole) states in the electric field, the bulklike modes with antisymmetric potentials are allowed in the intrasubband relaxation processes, as well as the modes with symmetric potentials. As the interface phonon scattering is strong only in narrow wells, in which the electric field affects the electron (hole) states little, the ELRs of hot carriers through the interface phonon scattering are not sensitive to the electric field. The HPE on the hot-carrier relaxation process in the medium and wide wells is reduced by the electric field. The influence of the electric field on the hot-phonon effect in quantum cascade lasers is negligible. When the HPE is ignored, the ELRs of hot electrons in wide QWs are decreased noticeably by the electric field, but slightly increased by the field when considering the HPE. In contrast with the electrons, the ELRs of hot holes in wide wells are increased by the field, irrespective of the HPE. (c) 2006 American Institute of Physics.