178 resultados para 650
Resumo:
系统地研究了快速热退火对带有3nm In_xGa_(1-x)As(x=0,0.1,0.2)盖层的3nm高的InAs/GaAs量子点发光特性的影响。随着退火温度从650℃上升到850℃,量子点发光峰的蓝移趋势是相似的。但是,量子点发光峰的半高宽随退火温度的变化趋势明显依赖于InGaAs盖层的组分。实验结果表明In-Ga在界面的横向扩散在量子点退火过程中起了重要的作用。另外,在较高的退火温度下观测到InGaAs的发光峰。
Resumo:
采用高压电子显微镜(HVEM)的原位观察技术,在1MV加速电压和室温至650℃加热条件下,观察了氢离子注入硅片中缺陷层的变化。在500℃以下,氢离子注入缺陷层基本没有变化,在650℃保温时,缺陷的密度逐渐降低,样品中薄区域部分的缺陷在保温20min后消失,而厚区域部分在保温40min后仍存有部分缺陷,说明缺陷的变化与样品厚度有关。用氢的扩散理论讨论了这一现象,提出氢可能是以H_2分子的形式扩散的。
Resumo:
结果表明,在淀积过程中,最初淀积的Ti与衬底表面的氧形成Ti-O键,界面区很窄;450℃退火1h后,有少量元素态Al、Si原子析出,界面区有所展宽,但变化不大;650℃退火1h后,界面发生强烈反应,有TiO和Ti-Al、Ti-Si化合物生成。850℃退火1h后,除上述反应产物外又生成了Ti_2O。
Resumo:
用X射线衍射分析、二次离子质谱、卢瑟福背散射谱、俄歇电子能谱等表面分析技术,研究了Ti膜与AlN陶瓷衬底的界面固相反应。在高真空中用电子束蒸发的方法在抛光的200℃AlN陶瓷衬底上淀积200nm的Ti膜,并在真空恒温炉中退火。实验表明,退火中Ti膜与AlN界面发生了扩散与反应。650℃,1h退火已观测到明显的界面反应。界面反应产物主要是钛铝化物及Ti-N化合物。铝化物是Ti-Al二元化合物和Ti-Al-N三元化合物,850℃,4h退火后则主要由Ti_2AlN组成。
Resumo:
The polarization of vertical-cavity surface-emitting laser (VCSEL) can be controlled by electro-optic birefringence. We calculated the birefringence resulted from external electric field which was imposed on the top DBR of VCSEL by assuming that the two polarization modes were in the same place of the gain spectra in the absence of electric field beginning. By modifying SFM, the affection of the electric field strength on the polarization switching currents between the two polarization modes had been shown.
Resumo:
GaP/Si is a promoting heterostructure for Si-based optoelectronic devices since lattice constants of GaP and Si are so closed that they can match with each other. GaP was successfully grow on (100) Si subtracts by Gas-Source Molecular Bean Epitaxy (GS-MBE) in the study. The GaP/Si heterostructure was characterized by X-ray double crystal diffraction, Anger electron spectrograph, X-ray photonic spectrograph and photoluminescence (PL) measurements. The results showed that the epitaxial GaP layers are single crystalline, in which a parallel to and a (perpendicular to)are 0.54322 and 0.54625 nm, respectively. The peaks in PL spectra of GaP epitaxial layer grown on Si are 650, 627 and 640 nm, respectively. The study demonstrated that GaP/Si is a kind of lattice matched heterostructures and will be a promoting materials for future integrated photonics.
Resumo:
Isochronal thermal-annealing behavior of NTD floating-zone silicon grown in hydrogen ambient (called NTD FZ(H) Si) is presented. The dependencies of resistivity and carrier mobility on annealing temperature are determined by room-temperature Hall electrical measurements. Using infrared absorption spectroscopy, hydrogen-related infrared absorption bands evolution for NTD FZ(H) Si were measured in detail. It is demonstrated that compared with NTD FZ(Ar) Si, NTD FZ(H) Si exhibits the striking features upon isochronal annealing in temperature range of 150 similar to 650 degreesC: there appears the formation of an excessive shallow donor at annealing temperature of 500 degreesC. It is shown that the annealing behavior is directly related to the reaction of hydrogen and irradiation-induced defects. The evolution of infrared absorption bands upon temperature reflects a series of complex reaction process: irradiation-induced defects decomposition, breaking of Si-H bonds, migration and aggregation of atomic hydrogen, and formation of the secondary defects. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The single delta -doped InGaAs/AlGaAs pseudomorphic HEMT structure materials were grown by molecular beam epitaxy. The photoluminescence spectra of the materials were studied. There are two peaks in the photoluminescence spectra of the materials, corresponding to two sub energy levels of InGaAs quantum well. The ratio of the two peak's intensity was used as criterion to optimize the layer structures of the materials. The material with optimized layer ;tructures exhibits the 77 It mobility and two-dimensional electron gas density of 16 500 cm(2)/Vs and 2.58 x 10(12) cm(-2) respectively, and the 300 K mobility and two-dimensional electron gas density of 6800 cm(2)/Vs and 2.55 x 10(12) cm(-2) respectively. The pseudomorphic HEMT devices with gate length of 0.2 mum were fabricated using this material. The maximum transconductance of 650 mS/mm and the cut-off frequency of 81 GHz were achieved. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
650 nm-range AlGaInP multi-quantum well (MQW) laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) have been studied and the results are presented in this paper. Threshold current density of broad area contact laser diodes can be as low as 350 A/cm(2). Laser diodes with buried-ridge strip waveguide structures were made, threshold currents and differential efficiencies are (22-40) mA and (0.2-0.7) mW/mA, respectively. Typical output power for the laser diodes is 5 mW, maximum output power of 15 mW has been obtained. Their operation temperature can be up to 90 degrees C under power of 5 mW. After operating under 90 degrees C and 5 mW for 72 hrs, the average increments for the threshold currents of the lasers at 25 degrees C and the operation currents at 5 mW (at 25 degrees C) are (2-3) mA and (3-5) mA, respectively. Reliability tests showed that no obvious degradation was observed after 1400 hours of CW operation under 50 degrees C and 2.5 mW.