297 resultados para 1,25-dihydroxyvitamin D-3
Resumo:
Ⅰ. 聚合过程中聚合物交联反应机制的探讨 聚丙烯酰胺是水溶性聚合物,但一般工业生产的聚丙烯酰胺在水中很难溶解。一个重要因素是由于在聚合过程中聚合物发生了交联。Minsk (1949)认为聚丙烯酰胺大分子上的-CoNH_2的亚胺化,导致聚合物在水中难溶或不溶:Gleason (1959)和Suen (1960)分别指出活性链的链转移和在丙烯酰胺聚合过程中产生末端双键是聚合物交联的起因:AδkuH (1973)认为丙烯酰胺在浓水溶液中聚合是通过水离子作用生成网状聚合物。由于交联是一个伴随聚合的付反应,少量的交联就导致聚合物不溶,加之缺乏有效的分析手段,所以难于定量研究这一过程。一些科学工作者对交联的性质提出了各种设想,但有关交联方面的系统讨论加交联机制问题至今未见报导。本工作估算了聚丙烯酰胺的内聚能和分子间力(主要-CoNH_2间氢键作用力),说明了丙烯酰胺浓度越大,它的聚合产物越易交联;研究了聚合体系PH值对聚合交联的影响,丙烯酰胺在酸性或中性介质中用r射线引发聚合,很快出现凝胶,只有在碱性(PH > 13)介质中r射线幅照可得到水溶性聚丙烯酰胺。用酰胺基的亲核反应能力解释了原子效应,幅照生成聚合物自由基和双键是聚合物交联的潜在因素,在聚合体系加入链转移剂抗坏血酸,可有效地抑制聚合过程中聚合物的迅速交联;从红外光谱观察到交联聚丙烯酰胺的酰胺特征吸收峰从1650 cm~(-1)向亚胺特征吸收峰方向位移,聚丙烯酰胺的含N量低于理论值,交联聚丙烯酰胺含N量偏离理论值更大,以及不溶聚丙烯酰胺的交联键可以羟高温水解完全破坏,由此肯定聚合过程中聚合物交联具有亚胺结构。根据酰胺基结构特点加亲核取代反应原理,提出丙烯酰胺水溶液辐射聚合过程中聚合物的交联机制如下:1.聚合物自由基的生成。2.自由基促使-CoNH_2活化,导致-CoNH_2间亲核取代反应。3.当R_2 = -CH=CH_2即单体参与亚胺化则导致在分子链上产生悬挂双键,将引起聚合物交联。这一反应机制可以阐明丙烯酰胺水溶液辐射聚合过程中聚合交联起因和历程,可以解释键材剂。质子效应和亚胺之间联系,为制备水溶性聚丙烯酰胺提供了线索。Ⅱ. 聚丙烯酰胺的溶解 关于聚合物溶解理论前人曾从两方面进行探讨。一是Hidebrand (1949)提出以内聚能密度的平方根作为溶度参数δ来鉴别两种物互溶的可能性。Burrel (1955)把这一方法来研究聚合物的溶解。内聚能依赖于色散力、极性力和氢/键,它由三部分组成E = E_d + E_p + E_h,对应的溶度参数方程为δ~2 = δ_d~2 + δ_p~2 + δ_h~2,因此只有两种物质的溶度参数的各个分量相近时,才有可能互溶。这一方面的研究仅涉及溶解过程的热力学。另一是Ueberreiter (1968)提出溶解是一个相互扩散过程。聚合物在溶解过程中,溶解速度S和溶胀层厚度δ处于稳态。它们和溶剂在聚合物中平均扩散系数D-bar_s的关系为2S = D-bar_s/δ,比式直接反映了溶解的动力学过程。聚丙烯酰胺有极强的极性和形成氢键的能力,它只溶于水,对溶度参数的研究存在一定困难。采用扩散原理研究聚丙烯酰按的溶解速度和规律比较有利。为此目地,我们设计制作了专门溶解实验装置,借助聚丙烯酰胺存在电离基因,利用电导测定溶解速度S,并借助针入法则定溶胀层厚度δ和溶胀速度W,发现极性聚丙烯酰胺的溶解不同于Ueberreiter所研究的非极性聚合物聚苯乙烯的溶解。它是一个非稳态过程,不存在诱导期,溶解和溶胀同时进行,根据这事实和理论分析得到2S + W = (D-bar)_s/δ这一关系式与实验数据相符。此关系式可还原Ueberreinter的稳态溶解得到的关系式,并适用于交联聚合物的溶胀。聚丙烯酰胺的-CoNH_2强吸水性导致它在溶解时溶胀形成凝胶层是一个快步骤,而-CoNH_2强的形成氢键能A是溶解的主要障碍,因此溶解是一个慢过程。聚丙烯酰胺的溶解活化能E_s和水在聚合物中扩散活化能E_D都是6干卡/克分子左右;处于氢键离解能范围之内,所以聚丙烯酰胺溶解主要克服分子间氢键作用力。研究了影响聚丙烯酰胺的溶解因素:(1)聚丙烯酰胺单位时间溶解量与它们的颗粒直径2.5次方成反比。(2)聚丙烯酰胺溶解速度与分子量0.5 - 0.7次方成反比。(3)聚丙烯酰胺溶解速度对湿度的依赖关系为S = 0.278 exp[-627o/RT](4)聚丙烯酰胺大分子中引进-CooNa,吸水性增强,溶解过程双电层形成,产生剪切应力和静电斥力,促使键移动,降低了溶解活化能,加速溶解。(5)聚合物中添加亲水性强的表面活活性剂有利于聚丙烯酰胺的溶解。Ⅲ. 合成在水中易溶或速溶丙烯酰胺聚合物和共聚物 本文强调了在丙烯酰胺水溶液辐射聚合过程中,避免聚合物交联是合成水溶性聚合物的先决条件。加NaOH的丙烯酰胺水溶液聚合和加链转移剂抗坏血酸的丙烯酰胺水溶液聚合物都可得到转化率和分子量都较高,而且不交联的丙烯酰胺的聚合物和共聚物。在单体水溶液中添加尿素对聚合物有助溶效果;添加亲水性强的表面活性剂JFC可改善聚合物颗粒的粘结和抱团。提出了两个聚合体系,合成出在水中速溶的聚丙烯酰胺和羰钠基不同含量的阴离子型 聚丙烯酰胺,聚合物颗粒小于40目,可在10分钟内完成溶解。
Resumo:
本论文研究了 SmVO_3、SmVO_4、Sm_2TiO_5、Sm_2Ti_2O_7、Sm_3Ti_2O_7复合氧化物的制备、结构、电学性质和光学性质。其中Sm_3Ti_2O_7是一种新型的,含有低价钐的复合氧化物。White等人曾试图利用金属钛还原Sm~(3+)为Sm~(2+),制备含有低价钐的钛的复合氧化物,但他们没有成功。我们考虑到钐的还原性比钛强,利用金属钐还原Ti~(4+)为Ti~(3+),制得了Sm_3Ti_2O_7。其反应式为:Sm_2O_3 + Sm + 2TiO_2 → Sm_3Ti_2O_7 (1) 利用X-ray衍射结构分析确定了它的结构为单斜晶系。其晶胞常数为a_0=3.968A,b_0=3.907A,c_0=20.456A,β_0=89.20。从反应式(1)可以看出,钐可以还原四价钛,又可还原三价钐,都能得到Sm_3Ti_2O_7复合氧化物。但钐和钛的价态不同,前者为Sm~(2+)Sm_2~(3+)Ti_2~(3+)O_7,后者为Sm_3~(2+)Ti_2~(4+)O_7。在结构上Sm_3Ti_2O_7与Eu_3~(2+)Ti_2~(4+)O_7不同,电学性质上,四价钛的复合氧化物有很高的电阻率,而三价钛的复合氧化物有较小电阻率的事实,及从光学性质测量存在Ti~(3+)的吸收,说明Sm_3Ti_2O_7是含有低价钐、钛的复合氧化物,其化学式为Sm~(2+)Sm_2~(3+)Ti_2~(3+)O_7。为了研究Sm-V-O、Sm-Ti-O复合物的输运性质,我们测量了它们的电阻率、禁带宽度、温差电动势率及从电阻对温度的依赖关系求出了它们的导电激活能。其中部分的实验结果在文献上未有报导。从实验结果来看,含有低价钒或钛的复合氧化物都有较小的电阻率,其值低于10~2Ω·cm,导电激活能在0.3ev以下;稳定价态的钡或钛复合氧化物有较大的电阻率,其值高于10~6 Ω·cm,导电激活能为2-2.5ev,禁带宽度在3.8ev附近。导电类型的测量表明它们都是p型半异体。对于Sm-V-O、Sm-Ti-O复合物的输运性质的研究,文献上仅仅对简单的钙钛矿结构的复合氧化物做了讨论,而对其它结构的复合氧化物则报导很少。因此我们从过渡元素的价态及配位体的结构、稀土钐的间接影响出发,并结合光学性质讨论了钐、钒、钛复合氧化物的输运过程。我们测量了SmVO_3、Sm_3Ti_2o_7薄膜的吸收光谱和SmVO_4、Sm_2TiO_5、Sm_2Ti_2O_7的粉末反射光谱。为了解释Sm_2TiO_5、Sm_2Ti_2O_7的反射光谱性质,利用EHMO方法,计算了TiO_5~(-6)、TiO_6~(-8)的分子轨道的能量。实验结果与计算值符合较好。
Resumo:
对于稀土与非稀土所组成的二元复合氧化物的研究国外已有较多的报导。但是,对于稀土和锑的复合氧化物只是近年来才开始有些研究工作。含锑与稀土的多元复合氧化物的报导就更少。本文在我们实验室张静筠等人三元复合氧化物研究的基础上,开展Mo—Sb_2O_5—R_2O_3—R'_2O_3—Bi_2O_3多元体系的研究工作,这对于我国丰产元素稀土和锑的应用以及利用Bi~(3+)的激活与敏化将是有益的。本文按Thornton等人的方法合成了Ba_2BiSbO_6,Ba_2GdSbO_6,按EγΦECEHKO等人的方法合成了M_2RSbO_6 (M = Ba、Sr、Ca, R = La Y)。并以M_2RSbO_6为基质,掺Sm~(3+)、Eu~(3+)、Dy~(3+)、Ho~(3+)、Er~(3+)、Tm~(3+)和Bi~(3+),研究它们的化学组成,晶体结构与发光性能的关系及规律,Bi~(3+)的荧光和敏作用。同时研究了它们的磁学和热学性能。化学组成的分析结果表明,计算的含量与实验测得的含量符合较好,说明化学反应是按化学计量比进行的。通过X-射线粉沫物相分析和晶胞参数的理论计算确定M_2RSbO_6(M = Ba、Sr、R = La、Y、Gd、Bi)复合氧化物是属于立方钙钛太型化合物。空间群为Fm3m,点群为Oh。用计算机计算了Ca_2YSbO_6的晶胞参数并结合荧光光谱分析确定它属于畸变的单斜钙钛矿,空间群为P_(21)。用磁天平测量了样品M_2RSbO_6 (M = Ba、Sr、Ca; R = Gd、Y、Bi)的磁化率。除Ba_2GdSbO_6是顺磁性物质外共余的都是反磁性的物质。按所用原料Sb_2O_5计算的磁化率与测量值符合较好,表明在所研究的M_2RSbO_6化合物中锑是正五价的。用热重热差分析仪测量了样品在反应中的热性能,观察到在化合物形成的过程中所用原料Sb_2O_3大约在520 ℃左右氧化变为Sb_2O_5。除所用原料碳酸盐分解外没有挥发性的物质,这就进一步证明化学组成分析和磁化率测量的结果是正确的。光学测量的结果表明,所有的磷光体随着激活离子浓度的不同其光谱都发生规律性的变化。对于不同Eu~(3+)浓度的Ba_2YSbO_6:Eu~(3+)和Br_2YSbO_6:Eu~(3+), Bi~(3+)体系用254nm激发时均能观察到Eu~(3+)于595nm的尖峰发射。用基质和Bi~(3+)的激发峰325nm激发时,明显地看到敏化剂Bi~(3+)到Eu~(3+)的能量传递,使Eu~(3+)于595nm的发射大大增强,我们认为Bi~(3+)对Eu~(3+)的敏化作用是由于基质和Bi~(3+)的~1S。→ 3P_1的跃迁吸收了激发的能量,然后无辐射弛豫到Eu~(3+)的激发态~5D_0,产生~5D_0 → 7F_1的磁偶极跃迁。对于不同Eu~(3+)浓度的Sr_2YSbO_6:Eu~(3+)和Sr_2YSbO_6:Eu~(3+), Bi~(3+)体系用245nm激发时均能观察到Eu~(3+)于595nm的尖峰发射。用基质和Bi~(3+)的激发峰335nm激发时,观察到基质和Bi~(3+)对Eu~(3+)具有某种能量传递。敏化作用机理与上述的Ba_2YSbO_6:Eu~(3+)和Ba_2YSbO_6:Eu~(3+), Bi~(3+)体系相同。对于不同Eu~(3+)浓度的Ca_2YSbO_6:Eu~(3+)和Ca_2YSbO_6:Eu~(3+), Bi~(3+)体系用396nm激发时,均能观察到Eu~(3+)于613nm很强的尖峰发射。用基质和Bi~(3+)的激发峰313nm激发时,见到Bi~(3+)和基质对Eu~(3+)具有某种能量传递,这种敏化作用主要是由于基质和Bi~(3+)的3P_1 → ~1S_0的400nm的宽带发射和Eu~(3+)的~7F_0 → ~5L_6的396nm的吸收相匹配产生~5L_6→~5D_0→~7F_2的跃迁。通过对激发光谱和荧光光谱的分析给出了Ca_2Y_(0.96)Eu_(0.04)SbO_6的能级图,从实验上可见,Eu~(3+)的发光强烈地依赖于钙钛矿的结构,当Eu~(3+)在空间群为Fm3m 的Ba_2YSbO_6和Sr_2YSbO_6中处于Oh点对称性时,主要是~5D_0 → ~7F_1的磁偶极跃迁。当Eu~(3+)在空间群为P_(21)的单斜钙钛矿中时,主要是~5D_0 → ~7F_2的电偶极跃迁。对于不同掺杂浓度M_2YSbO_6:R~(13+)(M = Ba、Ca; R' = Sm、Dy、Ho、Er、Tm)体系,通过激发和荧光光谱的研究,合理地确定了谱项。发现基质对Sm~(3+)、Dy~(3+)、Ho~(3+)具有敏化作用。对不同Bi~(3+)浓度的Ca_2YSbO_6:Bi~(3+),由激发和荧光光谱可见Bi~(3+)具有二个激发带,第一激发带位于240nm处相当于~1S_0 → ~1P_1的跃迁,第二激发带位于315nm处相当于~1S_0 → ~3P_1的跃迁。有一个很强的兰紫色发射位于400nm处相当于~3P_1 →~1S_0的跃迁。
Resumo:
伯胺N_(1923)(RNH_2)是一种对许多金属具有优良萃取性能的萃取剂,因RNH_2为较强的Lewis碱,能以多种途径与金属离子结合,文献报道的一般为加合反应及阴离子交换机理,至于配位反应未见报道,故详细地研究RNH_2萃取不同金属离子的机理,发现新的萃取,分离体系,具有理论和实际意义。本文分别研究了RNH_2及其相应盐从不同介质中萃取Ag~+,Zn~(2+),Cd~(2+),Sc~(3+)的机理。提出了RNH_2能以配位反应萃取金属离子,并且发现对一些体系(如ZnCl_2, Zn(SCN)_2, CdCl_2等)RNH_2及其盐均具有较好的萃取行为。对有关体系详细研究了其萃取机理:1)RNH_2萃取AgNO_3的机理。在接近中性介质中,RNH_2是AgNO_3的优良萃取剂,其反应机理为:2RNH_(2(0)) + Ag~+ + NO_3~- <-> (RNH_2)_2AgNO_(3(0))考察了溶剂,温度等反应平衡的影响,其分配比基本随溶剂介电常数的增大而增大,并且该反应为放热反应,温度升高不利于萃取。我们还解析了该萃合物的IR及NMR。2,RNH_3NO_3萃取硫代硫酸银的机理。与上述AgNO_3体系不同,RNH_2不能萃取硫代硫酸银,但RNH_3NO_3能以阴离子交换反应萃取该体系中的Ag(I)。通过研究不同因素对分配比的影响,指出在该体系中Ag(I)同时以AgS_2O_3~-和Ag(S_2O_3)_2~(3-)两种形式萃入有机相。并且有机相中AgS_2O_3~-/Ag(S_2O_3)_2~(3-)比值随着NO_3~-浓度的增大,RNH_3NO_3、S_2O_3~(2-)浓度的减小而增大。萃合物的IR分析证明存在两种不同配位形式的S_2O_3~(2-)。3,RNH_2萃取ZnCl_2的机理及平衡规律。研究了RNH_2在不同酸度条件下萃取ZnCl_2的机理,在pH值较高时,RNH_2能以配位反应萃取ZnCl_2,其反应为:2RNH_(2(0)) + ZnCl_2 <-> (RNH_2)_2ZnCl_(2(0))并详细地研究了其平衡规律,得出数学模型:1/D = 2/(C_(RMH_(2(o)))) X + (1 + Σ from i = 1 to 4 of β_i C_(cl~-)~i)/(K C_(cl~-)~2 C_(RNH_(2(0))) (X为平衡水相Zn~(2+)总浓度) 在高酸度([HCl] = 2.8 M)条件下,RNH_2萃取ZnCl_2呈加成反应:(RNH_3Cl)_(3(0)) + ZnCl_2 <-> (RNH_3Cl)_2ZnCl_(2(0))求得了萃取过程的各热力学函数。4)RNH_2萃取ZnBr_2, ZnI_2的机理。研究RNH_2萃取ZnBr_2,ZnI_2的性能表明,在pH值较高时, RNH_2能以萃取ZnCl_2相同的机理萃取ZnBr_2, ZnI_2,其反应为:2RNH_(2(0)) + ZnX_2 <-> (RNH_2)_2ZnX_(2(0)) (x~- = Br~-, I~-) 计算了不同RNH_2浓度条件下反应的平衡常数,表明不是RNH_2浓度的函数,该平衡常数随温度升高而降低。同时我们在相同条件下,比较RNH_2萃取ZnX_2的能力为:ZnI_2 > ZnBr_2 > ZnCl_2 5,RNH_2及其硝酸盐萃取Zn(SCN)_2的机理 在Zn(SCN)_2体系中,RNH_2及RNH_3NO_3的均能较有效地萃取Zn(II),但其反应机理并不相同,RNH_2以配位反应萃取Zn(SCN)_2,相应的反应为:2RNH_(2(0)) + Zn(SCN)_2 <-> (RNH_2)_2Zn(SCN)_(2(0)) RNH_3NO_3则以阴离子交换反应萃取Zn(SCN)_4~(2-),其反应如下:(RNH_3NO_3)_(2(0)) + Zn(SCN)_4~(2-) <-> (RNH_3)_2Zn(SCN)_(4(0)) + 2NO_3~- 测定并计算了各反应的浓度平衡常数及热力学函数,两反应均为放热反应。同时,在相同条件下,RNH_2比RNH_3NO_3有更强萃取Zn(II)的能力。6,RNH_2萃取CdCl_2及其它Cd(II)盐的机理 RNH_2及RNH_3Cl能分别以配位反应及加合反应萃取CdCl_2,通过萃合物组成的测定,得出反应方程式为:3RNH_(2(o)) + CdCl_2 <-> (RNH_2)_3CdCl_(2(0)) (RNH_3Cl)_(3(o)) + CdCl_2 <-> (RNH_3Cl)_3CdCl_(2(0))计算了各反应的平衡常数及热力学函数。同时观察了RNH_2萃取CdBr_2, CdI_2, Cd(SCN)_2的性能,相应萃合物组成为(RNH_2)_2CdX_2 (X~- = Br~-, I~-, SCN~-)。在相同条件下,CdX_2的萃取率次序为:Cd(NO_2)_2 < CdCl_2 < CdBr_2 < Cd(SCN)_2 < CdI_2。并讨论了CdX_2的生成能,第二级累积稳定常数,X~-的半径等因素与Cd(II)分配比的关系。7,RNH_2硫酸盐萃取Sc_2(SO_4)_3的机理 研究了不同因素对其萃取性能的影响,指出在硫酸介质中,RNH_2是Sc~(3+)的优良萃取剂。通过萃合物组成的测定得到该萃取反应式为:1.25[(RNH_3)_2SO_4]_(2(0)) + Sc(SO_4)_3~(3-) <-> (RNH_3)_3Sc(SO_4)_3·(RNH_3)_2SO_(4(0)) + 1.5SO_4~(2-)测定并计算了该反应的平衡常数及热力学函数。通过详细解释萃合物的IR,证明在该萃合物中SO_4~(2-)是以双配位形式与Sc~(3+)相结合。在上述萃取机理研究了基础上初步探讨了用RNH_2回收银及进行Zn(II)-Cd(II)分离的可能性。
Resumo:
本文研究了以MgCl_2-nBuoH-i-Bu_3Al-TiCl_4/i-Bu_3Al体系为基础的化学反应法乙丙无规共聚高效催化剂的制备方法及过程;催化剂的红外光谱,X-射线衍射,ESR分析;以及聚合反应特征与聚合产物的热性能,X-射线衍射与动态力学性能,溶剂萃取性能;共聚反应的竟聚率与共聚产物序列分布等。催化剂制备过程可以分为三步,即醇解,解醇和载钛。醇解旨在破坏氯化镁的晶体结构,使之生成溶剂化络合物,而解醇则是破坏溶剂化络合物,促氯化镁物相复现,通过载钛反应则使活性中心载负到氯化镁载体上,生成高效载体催化剂。催化剂的IR,X-射线衍射研究表明,上述催化剂是由钛载负在无定形(X-射线衍射)氯化镁载体上而形成的,对催化剂的电子顺磁共振光谱进行了研究,结果表明我们得到的高效载体催化剂具有两类不同的过渡金属活性中心,即配位饱和的钛与配位不饱和的钛。前者是非活性的,在聚合过程中ESR信号无变化;后者是活性的,它又可以分为单空位中心与双空位中心。单空位中心有利于乙烯、丙烯各自均聚合,生成两种链段的嵌段共聚物;双空位中心有利于乙丙无规共聚合,生成非结晶性的乙丙无规共聚物。在双空位中心上,乙烯、丙烯可以配位后予先活性,使链增长速率增大,乙烯、丙烯共聚活性大。用上述催化剂进行乙丙共聚合,丙烯共聚活性较传统的钒催化剂或非载体钛催化剂高得多,乙烯、丙烯共聚的竟聚率r_1 = 7.4, r_2 = 0.21,是迄今为止最接近的。在较远条件下,催化剂的共聚活性可达20万克聚合物/克钛。共聚反应具有催化活性高(较钒体系提高近20倍)、共聚活性大(共聚催化效率比乙烯均聚大10倍以上)及共聚物组成与进料气体组成相近三个特征。本催化剂共聚活性较高的根源在于催化体系的多活性中心、乙烯、丙烯两种单体在MgCl_2载体存在下的活性促进作用,共聚合的催化活性寿命长以及催化剂优良的传质效应。产物的溶剂萃取结果表明,共聚产物可以分为三部分。共聚产物较使用均相催化体系具有较大的链不均匀性。动态力学试验表明共聚物的玻璃化温度与商品乙橡胶相近,随结晶度增大,力学损耗峰峰高降低,并移向高温。乙丙共聚物的热分析和X-射线衍射表明,用高效钛催化剂,乙烯、丙烯都可生成具有晶性的长序列链段。在乙烯、丙烯组成相近时,二者可最大限度地无规共聚,生成非结晶的乙丙无规共聚物。 ~(13)C-NMR测定序列分布的结果支持上述结论。样品~(13)C-NMR序列分布的研究还表明,高效催化剂合成的乙丙共聚物中,不存在丙烯倒置现象,且丙烯单元为定向排列。综合样品热分析和动态力学试验的结果,所得乙丙共聚物具有四种多重转变,即:(1)-120 ℃左右的链段曲柄运动;(2)-50 ℃左右的玻璃化转变;(3)50 ℃左右的PE微晶解序以及(4)120 ℃左右的熔融转变,这些转变都与常规乙丙共聚物中特定的序列结构相对应。
Resumo:
本工作对环形聚苯乙烯的溶液性质作了系统研究。工作中运用了各种溶液性质的研究方法如激光光散射、凝胶色谱和溶液粘度。对不同分子量(1 * 10~4 ~ 2.3 * 10~5)的窄分布环形聚苯乙烯样品在良溶剂甲苯,不良溶剂丁酮以及不同温度的环已烷中第二维利系数的测定发现,在良溶剂中环形聚苯乙烯的第二维利系数小于线形聚苯乙烯,在不良溶剂中两者第二维利系数相近,而环形聚苯乙烯在环已烷中的θ温度为30 ℃,比线形聚苯乙烯的θ温度低4.5 ℃。这些结果表明环形聚苯乙烯分子间排斥体积效应小于线形分子,而分子内排斥体积效应略大于线形分子。环形聚苯乙烯在甲苯(25 ℃)和丁酮(25 ℃)中的第二维利系数与分子量的关系分别为甲苯 A_(2r) = 1.28 * 10~(-2) (M-bar)_w~(-0.283)丁酮 A_Z(2r) = 5.06 * 10~(-3) (M-bar)_w~(-0.273)通过测定环形聚苯乙烯系列样品在θ溶剂,良溶剂和不良溶剂中的特性粘数,确定了环形聚苯乙烯在多种溶剂中的Mark-Houwink方程,在θ溶剂中的Mark-Houwink方程为[η]_r = 5.102 * 10~(-2) (M-bar)_w~(0.508) 环已烷30 ℃应用粘度结果讨论了环形聚苯乙烯的粘度扩展因子、等效球半径,均方回转半径以及穿流效应,并与线形聚苯乙烯作了比较。
Resumo:
本文叙述了2.4-二甲基戊二烯基稀土金属有机化合物的合成并通过元素分析,红外光谱、核磁共振谱及质谱的鉴定。测定了Gd(2.4-GH_(11))_3的单晶结构,此外还合成了(2.4-GH_(11)K.TMEDA及K_2C_8H_8·3THF并也测定了它们的晶体结构。在所合成化合物的红外光谱中,没有属于C=C双键的吸收峰,表明分子中配位体以η~5形式的大π键体系与稀土金属离子结合,在Ln(2.4-GH_(11))_2Cl·TMF和Ln(2.4-GH_(11))Cl_2·GH_THF的红外光谱中,于1060波数附近出现一强而宽的吸收峰,即化合物中有四氢呋喃分子络合。化合物的室温NMR谱有四个吸收峰,2.4-二甲基戊二烯配位体可能为η~5平面∪或W构型。化合物的水解'H-NMR谱与质谱都证实水解产物为2.4-二甲基-1.3-戊二烯。它是-2.4二甲基戊二烯阴离子水解所得的唯一产物,它表明化合物中的配位体确为2.4-二甲基戊二烯阴离子。(2.4-GH_(11))_2Cl·TMDA配合物晶体结构是应用低温X-射线衍射技术用Nicolet R_3 M/E型四园衍射仪LT-1低温装置并利用重原子法测定的最小二乘法精修至收敛时的一致性因子R=0.055. Rw=0.057。晶体属单斜晶系P21/n空间群。晶胞参数a=11.322(4)A, b=9.242(3)A, c=15.956(5)A. β=106.70(3)分子中2.4-二甲基戊二烯阴离子呈平面∪构型。钾离子与四甲基乙二胺二啮体结合形成的络合阳离子和2.4-二甲基戊二烯阴离子相间排列形成无限链状结构分子。2.4-二甲基戊二烯阴离子的C-C键长明显分为中间与外端C-C键两组。外端组C-C键双性质较强键长较短。表明C3具有负电荷的共振杂化体贡献较大。分子中K-C键最短的是K-C(1.5)。而不是具有较多负电荷的C3-K键。这可能是由于几何因素造成的。K_2C_8H_8·3THF的晶体结构是采用与前者相同的方法测定的。它属三斜晶系,PT空间群,晶胞参数a=10.263(3)A, b=13.157(4)A, c=9.443A, α=87.51(2)°, β=114.93(2)°, γ=76.81(2)°. V=1111.6A, R=0.051. 晶体中负二价的环辛四烯阴离呈平面构型,具有中心对称性,两侧与两中心对称相关的钾离子连接,相邻的非等效的钾离子间通过两四氢呋喃分子的氧原子相连接,从而形成了无限链状结构的分子。环辛四烯反映了Huckel的4n+2芳香性规则。该结构的特别之处在于四氢呋喃分子的氧原子以桥键形式与两个钾离子同时连接。而这种形式的桥键在其它化合物中似还未发现。Go(2.4-GH_(11))_3的晶体结构亦是采用与前述相同的方法测定的。其晶体为三斜晶系,PT空间群,晶胞参数a=12.541A, b=12.853A, c=8.432A, α=91.44°, β=108.61°, γ=117.97°, V=112.54A~3. 结构测定表明,Gd(2.4-GH_(11))_3分子具有C_3h对称性。三个配位体阴离了的九个带负电荷的碳原子近似以三帽三角棱柱形式与钆离子配位。分子中2.4-二甲基戊二烯阴离子的C-C键长-亦分为而组。外端C-C键较中间C-C键强,键长较短,亦表明C3具有较多的负电荷。2.4-二甲基戊二烯阴离子本身近似呈平面∪构型。C2,C4偏离由C1 C3 C5三碳原子构成的平面0.067A。方向上远离中心钆离子。可能在此以离子性为主的化合物中,钆离子与不带电荷的C2 C4间的相互作用有些排斥性质。与Nd(2.4-GH_(11))_3不同的是,在Gd(2.4-GH_(11))_3分子中,Gd-(C(1,5)键最短,而不是Gd-C(3)键。这可能是由于钆离子的半径较小,化合物的空间位阻效应较大所致。
Resumo:
现代多脉冲及2D NMR技术是过去十年中发展起来的崭新的NMR实验方法。计算机模拟做为NMR实验的强有力分析手段已日益受到重视。国内这方面工作开展得尚很少;国外发表的工作主要采用的是数字模拟,存在分析结果不够直观、物理意义不够清晰等缺陷。本论文工作采用乘积算符方法研制出对分析多脉冲及2D NMR实验普适的模拟程序PROPER;在乘积算符基础上,针对磁等性自旋体系,提出了实用的对称化乘积算符及多量子积算符方法。一、多脉冲及2D NMR实验的计算机模拟 1. 采用乘积算符方法在本所PDP-11/23微机上研制了多脉冲及2D NMR实验的模拟程序PROPER。该程序对不超过4核(I = 1/2)的同核及异核弱耦合自旋体系非选择性脉冲序列的分析是普遍适用的。受计算机内存的限制,PROPER程序所能处理的脉冲序列脉冲间隔数目一般不超过10。2. 应用PROPER模拟程序对INEP和DEPT脉冲序列进行了分析比较;特别对BIRD脉冲序列的各种相位变型进行了模拟分析,给出了分析结果,分析过程中考虑了影响BIRD作用效果的同核耦合因素。应用结果表明,PROPER程序计算正确、迅速、给出的模拟结果较通常的数字模拟方法简单、直观、物理意义清楚,便于分析。由于采用算符模拟,结果的输出打印比较费时。目前,PROPER程序正在改进和完善之中。二、多脉冲及2D NMR实验的密度算符描述 1. 针对磁等性自旋(I = 1/2)体系,首次提出了对称化乘积算符描述方法。在通常的乘积算符基础上,引入了对称化乘积算符,并对其数理基础进行了详细论证。推导了算符循环对易关系决定的Liourill-Von Neumann方程的解,给出了算符间普遍存在的循环对易关系及其相应的演化公式。据此,以InS(I = 1/2, S = 1/2; n = 2,3)自旋体系为例,对DEPT脉冲序列进行了分析;结果表明,该方法较通常的乘积算符方法对磁等性自旋体系的分析要简单、实用,且物理意义更加明确。由于该方法涉及较多的算符对易关系,因此不易计算机编程。2. 在对称化乘积算符基础上引入了多量子积算符的概念。以In(I = 1/2; n = 2,3)体系为例,给出了两者的互换关系。推导出了具有标量耦合作用的两组合粒子体系普适的多量子积算符环对易关系及相应的演化解析式。多量子积算符方法可望将1/2-自旋磁等性组合粒子表象与自旋大于1/2的单粒子表象统一起来,并为计算机模拟提供新的数学方法。该方法尚有待于进一步研究。
Resumo:
6.6-二甲基富烯与金属镁、CCl_4在THF中还原偶联可产生双碳桥联二环戊二烯基氯化镁,[C_5H_4C(CH_3)_2C(CH_3)_2C_5H_4]Mg_2·Cl_2·4THF。该化合物与无水氯化稀土反应可产生双碳桥联二环戊二烯基稀土氯化物;(I)(II)两类化合物经元素分析,热失重分析,红外光谱,核磁共振谱、电子能谱、水解产物的质谱,核磁共振谱分析及(I)类化合物中镱的络合物的晶体结构分析确定了该化合物的组成及结构。采用低温技术,用Nicolet R_3M/E型四园衍射仪,LT-1低温装置收集衍射数据。并用重原子法解出结构,块矩阵最小二乘法修正。R = 0.0507, R_w = 0.0530。晶体[C_5H_4C(CH_3)_2C(CH_3)_2 C_5H_4]TbClMg_2Cl_4·7THF属三斜晶系,PT空间群,a = 16.911A, b = 13.208A, c = 13.772A, α = 116.52°,β = 111.30°, γ = 87.61°, V = 2549.02A~3, M = 1116.1,晶胞中含2份化学式量,D_C = 1.45g/cm~3, μ = 22.6cm~(-1)(Mokα)。晶体结构分析表明,该化合物为一离子对型络合物,络阴离子的结构为桥联二环戊二烯为-螯含配体,该配体的二个环戊二烯基和两个Cl~-离子与Yb~(+3)离子络合成四面体构型。每个环戊二烯基均以η~5和Yb~(+3)离子成键。该螯合物具有一定的张力。两个桥碳原子及与桥碳原子相连的环戊二烯基环上的碳原子的键角较正常的碳正碳面面体角扩张了约5°。另一THF分子为填隙分子。该离子为两个共用三个氯顶点的变形八面体。两个镁以三重氯桥键相连。这种三重氯镁桥键是首次发现。氯镁核键基本保持离子键的特征,其氯镁键长与氯镁的无机盐键长极为相近。Yb~(+3)离子的配位数与8,Mg~(+2)离子的配位数为6。6,6-二甲基高烯与苯基理在1:1的乙醚,汽油溶剂的中0 ℃反应产生一个叔烷基取代环戊二烯基锂。该锂盐与无水氯化钙反应可产生取代环戊二烯基氯化钙;该化合物的组成已为元素分析,热重分析,红外光谱核磁共振氢谱及水解产物质谱,核磁共振氢谱所证实。红外光谱中700、752、1470、1500、1600cm~(-1)吸收峰示有苯环存在,1360,1380cm~(-1)示有谐二甲基,1025cm~(-1)示有取代环戊二烯基。产物的核磁共振氢谱的化学位移值为:7.21ppm示有苯环,6.13,6.30ppm示有环戊二烯基。1.53ppm为甲基上的氢的化学位移值。
Resumo:
长链脂肪酸、醇及其酯与多种功能材料密切相关,如表面活性剂、生物膜、昆虫激素、储能材料等。链结构的变化对材料性能的影响,引起化学家的广泛兴趣。弄清链结构变化与光谱之间的关系,对探讨材料结构与性能的关系、异构体的鉴别有着重要的理论意义和实际用途。长链单不饱和脂肪醇乙酸酯作为鳞翅目昆虫的性外激素,有着重要的实用价值。有关该类化和物的红外光谱和拉曼光谱以及简正坐标分析在国内外尚未见报导。我们详细探讨了该类系列化和物共11个的红外光谱和拉曼光谱振动频率及其强度与结构的变化关系,并以顺-3-已烯-1-醇乙酸酯为模形进行了简正坐标分析。第一部分研究了系列化合物的红外和拉曼光谱对11个化合物在室温(液态)和低温(固态)的红外光谱及室温时拉曼光谱进行了观测和研究。一、谱带归属参考有观文献及我们所作的简正作标分析,将本系列化合物振动光谱谱带进行归属。C=O为极性基团,其伸缩振动在红外光谱中呈现强吸收带。双键C=C伸缩和和甲基、亚甲基中C-H伸缩、亚甲基变形在拉曼光谱中为强散射带。因此红外与拉曼光谱相配和有助于区分这类化和物。二、系列化合物的光谱差异在室温下,各异构体的红外和拉曼光谱都相似,难以区分不同的异构体。但低温固态的红外光谱则有明显差别,可用于异构体的结构判别。低温红外光谱中1500~1300cm~(-1)甲基、亚甲基的变角振动区,1050cm~(-1)附近的C-O伸缩振动区1000cm~(-1)以下亚甲基平面摇摆振动及C=O面外变形振动有差别,这些差别不仅表现为谱带分裂数目不同,而且相对强度也不同。三、谱带位移双键插入分子链中引起某些红外特征频率移动。在室温下,亚甲基平面摇摆振动720cm~(-1)区随亚甲基链-(-CH_2-)-_m、-(-CH_2-)-_nm,n的增加向低频方向移动。而在低温固态时,除亚甲基平面摇摆振动频移外,C-O-C反对称伸缩振动1250cm~(-1)区随m,n的增大移向高频,与饱和脂肪酸酯中该频率位移方向相反。=C-C反对称伸缩970cm~(-1)区也随n的增加移向高频,与m的增加无关。四、红外光谱强度双键的存在也影响了亚甲基伸缩振动的红外吸收强度。双键的嵌入破坏了亚甲基链的连续性,亚甲基对称伸缩的相对强度I_(2857)/I_(2957)与亚甲基链长总数无直接关系,而与连续亚甲基链长m,n有线性关系。m,n之一增大时,相对强度增强,当链长一定,双键位置在链中移动时,双键位于碳链中间时,相对强度最低。因此亚甲基对称伸缩红外吸收相对强度由连续亚甲基链-(-CH_2-)-_m -(-CH_2-)-_n中m、n的大小和双键所在位置决定。五、拉曼光谱强度系列化合物碳链长度及双键位置对拉曼光谱散射强度也有规律性影响。双键的存在使亚甲基的振动模式的散射强度不是单个亚甲基的简单加和,而与m,n有关。m,n之一增大时,亚甲基对称伸缩相对强度I_(2851)/I_(2871)增强。m,n的增大对相对强度的影响程度不同,m增大时所引起的相对强度增强速度更快,是n的1.7倍左右。因此,利用这些工作曲线,接合某些物性资料,可以估计该类未知化合物的双键位置和链长。第二部分对该类化合物进行了简正坐标分析。我们以顺-3-已烯醇-1-乙酸酯为模型,对长链单不饱和脂肪醇乙酸酯进行了简正坐标分析,选取局部对称的U-B力场,应用NRCC程序,得到一套使分子中各特征基团的计算频率与观测值同时符合得很好的力常数和相互作用力常数。顺-3-已烯-1-醇乙酸酯的结构式:CH_3CH_2HC=CHCH_2CH_2-O-C = O 模型化合物分子含有三种基团:C = C、 -C = O、CH_3-CH_2-。无整体对称性。将它们进行了局部对称化,胺局部对称的U-B力场选取了相应的初始力常数。C-H伸缩振动,计算计算频率与观测值符合的非常好,势能分布很集中。各振动模式间偶合作用很小。甲基的两种简并伸缩模式,Takehike等认为不能区分,只给出一个力常数。实际上这是两种不同的振动模式。我们给出了各自的力常数。振动频率分别为2952cm~(-1)、2930cm~(-1)。甲基和亚甲基各振动模式,计算结果与实验值吻合的很好。应用局部对称坐标组合后,各振动模式之间相互作用较小,势能分部较集中。甲基变形振动与伸缩振动一样,Takahiko对两种简并的弯曲和摇摆振动只分别给出了一个力常数,指认其振动频率为1460cm~(-1)、1150cm~(-1)。我们的结果区分了这四种不同的振动模式,相应得到四个力常数和各自的振动频率14680cm~(-1)、1460cm~(-1)及1088cm~(-1)、1026cm~(-1)。亚甲基的剪式变形,面内摇摆及面外摇摆分别为1439cm~(-1)、1302cm~(-1)、726cm~(-1)。其扭曲变形和弯曲变形不是强峰,不作为鉴别亚甲基的特征峰。饱和烷烃中C-C伸缩模式,指认很不统一,Snyder等认为在1060cm~(-1)左右;Takehiko等认为在830cm~(-1)附近。我们的结果为901cm~(-1),红外和拉曼光谱峰都很弱,不宜作为特征基团频率使用 。双键部分的振动,计算频率与观测值符合的很好。我们给出了双键部分与对称与反对称振动的力常数。=C-H面内对称与反对称变形振动频率分别为1263cm~(-1)、1397cm~(-1)。面外对称与反对称变形分别是784cm~(-1)、887cm~(-1)。它们的势能分布较低。=C-C对称与反对称伸缩分别为859cm~(-1)、975cm~(-1)。势能分布较文献的结果高得多。有关C=O部分观测频率数目较少,计算值与实验值符合得很好。但其中一个C-O伸缩模式相差较大,且势能分布很低。
Resumo:
本文系统地研究了稀土元素的价态,半径对LnBa_2Cu_3O_(7-δ)化合物的结构、超导电性、某些性质的影响,分以下几个方面。1、LnBa_2Cu_3O_(7-δ)化合物的结构和某些性质(如氧含量、Cu~(3+)/Cu~(2+)之比值,晶胞参数、正交畸变等)均随三价稀土离子半径呈现规律性的变化。2、研究了YbBa_2Cu_3O_(7-δ)的合成机理,提出了不同于YBa_2Cu_3O_(7-δ)的反应机理;研究了Ln对(YbLn)Ba_2Cu_3O_(7-δ)结构和性质的影响。3、分析了LnBa_2Cu_3O_(7-δ) (Ln = Pr、Y)的XPS图谱,讨论了影响PrBa_2Cu_3O_(7-δ)超导性的原因。4、研究了Ln对(PrLn)Ba_2Cu_3O_(7-δ)的结构及超导电性的影响,讨论了Cu-O链,Cu-O层,Cu~(3+)对超导性的贡献。5、研究了稀土取代Bi(部分)对Bi-Sr-Ca-Cu-O结构及超导性的影响,稀土取代只有低Tc相生成,少量稀土取代Bi可得-80k的超导电性。
Resumo:
通过对La_(1-x)Sr_xNiO_(3-λ),La_(1-4/3x)Th_xNiO_(3-λ),La_(2-x)Sr_xNiO_(4+λ)三个系列催化剂上氨氧化的研究,提出如下结论:即Ni~(3+)为三系列催化剂的活性离子,晶格氧(O~=)为氨氧化的主要活性氧种。在LaNiO_(3-λ)中,氧缺陷已达到有序化,掺入Sr~(2+)后,在X ≤ 0.3含量减少,活性下降。在La_(1-4/3X)Th_xNiO_(3-λ)中,由于始终存在1/3X的阳离子缺陷,所以在X ≤ 0.3内,即在保持钙钛矿结构不变的范围内,使氧缺陷有序化结构得到破坏,变为无序的点缺陷,提高了Ni~(3+)的含量,从而也提高了催化活性。由于La_2NiO_4相在高温区较LaNiO_3稳定,所以以LaNiO_3中掺入杂质高于较易使钙钛矿结构发生分解,变成La_2NiO_4等相。La_(0.9)Sr_(0.1)NiO_63在≥950 ℃时便会发生这种反应。La_2NiO_(4+λ)中掺入Sr~(2+)后,其结构不发生变化,但会发生一定程度的畸变,Ni~(3+)量随Sr~(2+)的掺入而提高,活笥也随之升高,在La_(2-x)Sr_xNiO_(4+λ)中阴,阳离子缺陷都存在,在 X = 0.5时,La_(1.5)Sr_(0.5)NiO_(4+λ)变为计量化合物,La_(1.5)Sr_(0.5)NiO_(4.00)。三系列催化剂的活性物与电阻成反比,越不易被还原的催化剂活性越高。
Resumo:
本论文包括三个部分的内容,第一部分研究了Y-Ba-Cu-O材料中,钙、钾、氟离子的掺入对材料结构和电、磁学性质的影响。1、在Y_(1-x)Ca_xBa_2Cu_3O_(7-y)系列中,当x ≤ 0.15时,钙离子进入了YBa_2Cu_3O_(7-y)晶格中钇离子的位置,使晶胞参数略为增大,但没有引起正交 → 四方相变。钙离子渗入导致123相中Cu~(3+)含量上升,同时材料的监界超导转变温度下降。因此,Cu~(3+)含旱管高可能是对超导电性不利的。由于钇离子位置紧邻着Cu(2)-O平面而与Cu(1)-O链相隔较远。因此,钇离子被钙离子替代时主要影响了Cu(2)-O平面的性质。少量钙离子的渗入即明显影响材料的超导电性,这说明Cu(2)-O平面的性质与超导电性密切相关,并可能起着关键的作用。2、在Y(Ba_(1-x)Ca_x)_2Cu_3O_y系的研究中,当x = 1,YCa_2Cu_3O_y是一个单一的化合物,文献未见报道,本文研究了它的结构,电学性质与热学性质,确定它的结构属正交晶系,a = 5.286 A、b = 7.636 A、c = 9.286 A。热分析表明YCa_2Cu_3O_y在1080 ℃分解,分解前于380 ℃ 和608 ℃出殃失氧现象。这个化合物是黑色n型半导体。室温电阻率1.2 * 10~5Ω·cm。与热分析中的失氧温度相对应,lnρ-1/T曲线上在370 ℃、620 ℃ 出现两个转折点。3、在Y-Ba-Cu-O材料中渗入钾离子能细化材料晶粒,降低超导转变宽度,提高零电阻温度,但由于KOH、K_2CO_3等强吸湿性杂质的存在也降低了材料的稳定性。4、在Y-Ba-Cu-O材料中间时掺入钾和氟离子时,材料的超导电性的变化与仅掺钾时相似。这种变化可能主要是钾离子的影响造成的。第二部分中,我们研究了Ca-Sr-Ca-O系的相图和新化合物Sr_3Cu_5O_(8+x)、CaSrCu_3O_(5+x)的结构和电学性质。在第三部分中,广泛研究了组成为Bi_tSr_vCa_wCu_zO_y超导材料的制备,结构和超导电性。铋系超导材料的形成貌与YBa_2Cu_3O_y材料有较大差异,前者是片状层叠的晶粒堆积而成,后者是球状小颗粒堆积而成的。我们合成的材料最高起始转变温度124K,最高零电阻温度112K,与国际上已达到的最高Tc值一致。Jc值达到131A/cm~2。
Resumo:
聚合物固体电解质是近几年来引起人们高度重视的一种新型功能材料。由于质轻、可塑性强,可加工成溥膜等特点,使它在固体电池,燃料电池,电化学元件和分离膜等方面的应用上显示了很大的优越性,尤其在全固态高能密锂电池的应用上已成为强有力的竞争者。聚合物固体电解质是一类由聚醚类主体聚合物与无机盐形成的络合物。目前研究的大多是以取环氧乙烷(PEO)为主体聚合物的各种碱金属盐络合物。研究表明,PEO是迄今为止所发现的络合能力最强的主体聚合物,与无机盐络合后高温电导率可达2 * 10~(-3)scm~(-1),但室温下由于PEO的高结晶性阻碍了离子的迁移,电导率只有10~(-8)-10~(-7)scm~(-1),从而使其应用范围受到局限,本工作采用共聚、交联及添加低分子增塑剂的方法制得了既具有较高室温电导率又具有良好机械加工性能的聚合物电解质。主要工作及结论如下:1、选择了带有双键的烯丙基缩水甘油醚这一单体与环氧乙烷共聚,制得了P(EO-AGE)二元共聚物。讨论了不同催化剂对产物结构和性能的影响,发现AlEt_3-H_2O-acac的催化效果较好。DSC和X-射线衍射结果表明,共聚使PEO的结晶受阻,其结晶度随着AGE含量的增大而减小。共聚物的玻璃化转变温度及溶点均较纯PEO的低。由二元共聚物和LiClO_4组成的P(EO-AGE)-LiClO_4络合物室温电导率达2*10~(-5)scm~(-1),较纯PEO-LiClO_4体系高2-3个数量级。2、在二元共聚物的研究基础上,合成了(环氧乙烷-环氧丙烷-烯丙基缩水甘油醚)三元共聚物,P(EO-PO-AGE)。结果表明,三元共聚物具有更低的玻璃化转变温度和更多的无定形结构。P(EO-PO-AGE)-LiClO_4络合物的室温电导率达5 * 10~(-5)scm~(-1)。3、对P(EO-AGE)-LiClO_4和P(EO-PO-AGE)-LiClO_4络合物结构的研究发现,络合物在L:/O=0.20-0.125(mol)范围内呈现完全无定形的结构,当L:/O分别为0.33和0.25(mol)时,在X-射线衍射图上出现了新的结晶衍射峰。证实了组成分别为O/Li=3和O/Li=4的结晶络合物的存在。4、对P(EO-AGE)-LiClO_4和P(EO-PO-AGE)-LiClO_4络合物电导的研究表明,电导对温度的依赖性服从VTF方程:σ=AT~(-1/2)e~(-B/(T-To)),呈现典型的非晶电解质电导行为,但在50-70 ℃范围内lg(σT~(1/2)~1/(T-To)曲线出现转折。络合物电导与盐浓度的关系表现出与理论相一致的结果,即在某一盐浓度下存在一极大值,对P(EO-AGE)-LiClO_4和P(EO-PO-AGE)-LiClO_4体系,电导极大值都出现在O/Li=20处。此处,还讨论了共聚物组成,阴离子,阳离子种类及离子对对络合物电导率的影响。5、采用添加低分子增塑剂聚乙二醇(PEG400)的方法不仅提高了聚合物电解质柔顺性,使分子链段活动性增加,而且增加了体系的无定形区,为离子迁移提供了新的导电通递。增塑P(EO-PO-AGE)-LiClO_4络合物的电导随着增塑剂含量的增大而升高,60%(vol)PEG400增塑的P(EO-PO-AGE)-LiClO_4聚合物电解质膜的电导率可达10~(-4)scm~(-1)(25 ℃)。增塑的电解质膜不仅具有较高的室温电导率,而且具有良好的热稳定性,在700 ℃下无相分离;于干燥气氛下放置一年无蠕变流动现象,电导亦无变化。6、采用硫化和辐射交联法制得具有网络结构的聚合物电解质膜。交联后的电解质膜尺寸稳定性增加,拉伸强度和断裂伸长均成倍增加,抗溶剂性能提高,具有良好的可加工性。硫化交联所得的P(EO-AGE)-LiClO_4和P(EO-PO-AGE)-LiClO_4网络电解质膜的室温电导率仍可达10~(-5)scm~(-1),而经辐射交联所得的PEG400增塑的P(EO-PO-AGE)-LiClO_4电解质膜的室温电导率可达10~(-4)scm~(-1)。交联电解质膜具有与未交联电解质膜相似的电导行为。
Resumo:
本论文通过对计算方法的筛选,把目前被认为是最有前途的多元统计学方法--主组份回归法(PCR)和偏最小二乘法(PLS)以及人们使用较多的CPA矩阵法固较为成熟的,且普遍使用的光度分析有机地结合在一起,对多组份混合体系进行了同时测定的应用研究。并详细阐述了多元线性回归方法(MLR)、PLS、PCR方法的基本数学原理,继而又以运行速度较快的FORTRAN语言分别编制了CPA矩阵法,PCR法,PLS法的计算机程序,实现了对光谱数据矩阵和校准浓度矩阵的计算机全处理过程,获得了预期的效果。经过它们处理计算的几个多组份混合体系的同时测定,也都取得了满意的结果。本文还通过对CPA矩阵法,PCR法和PLS法的计算测定的比较,归纳总结了它们各自的优缺点,并在校准样品的系列统计设计。以交叉证实法(Cross-Validation)确定最佳校准模型的因子数,不相容因子(DF)判定检查结果的可靠性等方面都作了较系统的有益探索,并提出了些新颖的观点和看法,证明了其具有广阔的应用前景。即使对有交互作用较强的药物样品的定量分析,仍取得了较满意的结果。本论文共作了如下四方面的探讨。1.CPA矩阵法在光度分析中进行多组份体系同时测定的研究。2.偏最小二乘法(PLS)在分光光度定量分析中的应用。它是以因子分析为基础的多元统计学方法。3.主组份回归法(PCR)同时计算测定钨、钼、钒。它是因子分析(FA)和MLR相结合的产物。故兼容了FA和多元线性回归法中的经典最小二乘法(CLS)和逆最小二法(ILS)的优点。4.多元统计学方法在光度分析中应用的研究。本文将较为优异的计算方法,PCR和PLS分别进行了多方面的分析测定研究。总之,PCR和PLS法都是因子分析(FA)和多元线性回归法(MLR)相结合的产物。在目前的计算方法中,被认为是最有前途的多元统计学方法。