325 resultados para External morphology
Resumo:
We investigate effects of nitridation on AIN morphology, structural properties and stress. It is found that 3 min nitridation can prominently improve AIN crystal structure, and slightly smooth the surface morphology. However, 10 min nitridation degrades out-of-plane crystal structure and surface morphology instead. Additionally, 3-min nitridation introduces more tensile stress (1.5 GPa) in AIN films, which can be attributed to the weaker islands 2D coalescent. Nitridation for 10 min can introduce more defects, or even forms polycrystallinity interlayer, which relaxes the stress. Thus, the stress in AIN with 10 min nitridation decreases to -0.2 GPa compressive stress.
Resumo:
The in situ optical reflectivity measurements are employed to monitor the GaN epilayer growth process above low-temperature AlN buffer layer on c-plane sapphire substrate by metalorganic chemical vapor deposition. It is found that the lateral growth of GaN islands and their coalescence is promoted in the initial growth stage if the AlN buffer layer is treated with a long annealing time and has an optimal thickness: As confirmed by atomic force microscopy observations, the quality of GaN epilayers is closely dependent on the surface morphology of AlN buffer layer, especially the grain size and nuclei density after the annealing treatment. (C) 2004 American Institute of Physics.
Resumo:
We observed a transition from film to vertically well-aligned nanorods for ZnO grown on sapphire (0001) substrates by metalorganic chemical vapor deposition. A growth mechanism was proposed to explain such a transition. Vertically well-aligned homogeneous nanorods with average diameters of similar to 30, 45, 60, and 70 nm were grown with the c-axis orientation. Raman scattering showed that the E-2 (high) mode shifted to high frequency with the decrease of nanorod diameters, which revealed the dependence of nanorod diameters on the stress state. This dependence suggests a stress-driven diameter-controlled mechanism for ZnO nanorod arrays grown on sapphire (0001) substrates. (c) 2005 American Institute of Physics.
Resumo:
We have studied the effect of molecular beam epitaxy growth conditions on the surface morphology of strained InAs/GaAs(331)A films. Our results reveal that InAs nanowires aligned along the [1 (1) over bar0] direction are formed under As-rich conditions, which is explained by the effect of anisotropic buffer layer surface roughing. Under In-rich conditions, however, the surface morphology of the InAs layers is characterized by a feature of island-pit pairs. In this case, cooperative nucleation of islands and pits can lower the activation barrier for domain growth. These results suggest that the surface morphology of strained InAs layers is highly controllable. (C) 2005 American Institute of Physics.
Resumo:
Thickness effect of immiscible alloy InAlAs as matrix layer on the morphology of InAs nanostructure grown on InAlAs/InP (0 0 1) by solid-source molecular-beam epitaxy has been studied. Experiments demonstrate that InAs nanostructure grown on thin InAlAs matrix layer forms randomly distributed quantum dot, whereas, grown on thick InAlAs matrix layer forms one-dimension ordered mixture of quantum wire and quantum dot. This drastic modification in the nanostructure morphology is attributed to the generation of composition modulation in the immiscible InAlAs alloy with the increase of the layer thickness. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We investigate the development of cross-hatch grid surface morphology in growing mismatched layers and its effect on ordering growth of quantum dots (QDs). For a 60degrees dislocation (MD), the effective part in strain relaxation is the part with the Burgers vector parallel to the film/substrate interface within its b(edge) component; so the surface stress over a MD is asymmetric. When the strained layer is relatively thin, the surface morphology is cross-hatch grid with asymmetric ridges and valleys. When the strained layer is relatively thick, the ridges become nearly symmetrical, and the dislocations and the ridges inclined-aligned. In the following growth of InAs, QDs prefer to nucleate on top of the ridges. By selecting ultra-thin In0.15Ga0.85As layer (50nm) and controlling the QDs layer at just formed QDs, we obtained ordered InAs QDs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
By employing non-equilibrium Green's function method, the mesoscopic Fano effect modulated by Rashba spin-orbit (SO) coupling and external magnetic field has been elucidated for electron transport through a hybrid system composed of a quantum dot (QD) and an Aharonov-Bohm (AB) ring. The results show that the orientation of the Fano line shape is modulated by the Rashba spin-orbit interaction k(R)L variation, which reveals that the Fano parameter q will be extended to a complex number, although the system maintains time-reversal symmetry (TRS) under the Rashba SO interaction. Furthermore, it is shown that the modulation of the external magnetic field, which is applied not only inside the frame, but also on the QD, leads to the Fano resonance split due to Zeeman effect, which indicates that the hybrid is an ideal candidate for the spin readout device. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
A stabilized and tunable single-longitudinal-mode erbium-doped fiber ring laser has been proposed and experimentally demonstrated. The laser is structured by combining the compound cavity with a fiber Fabry-Perot tunable filter. An injection-locking technique has been used to stabilize the wavelength and output power of the laser. One of the longitudinal modes is stimulated by the injected continuous wave so that this mode is able to win the competition to stabilize the system. A minimum output power of 0.6 dBm and a signal-to-noise ratio of over 43 dB within the tuning range of 1527-1562 nm can be achieved with the proposed technique. A wavelength variation of less than 0.01 nm, a power fluctuation of less than 0.02 dB, and a short-term linewidth of about 1.4 kHz have also been obtained.
Resumo:
The three-dimensional morphology of In(Ga)As nanostructures embedded in a GaAs matrix is investigated by combining atomic force microscopy and removal of the GaAs cap layer by selective wet etching. This method is used to investigate how the morphology of In(Ga)As quantum dots changes upon GaAs capping and subsequent in situ etching with AsBr3. A wave function calculation based on the experimentally determined morphologies suggests that quantum dots transform into quantum rings during in situ etching. (c) 2007 American Institute of Physics.
Resumo:
The authors report the self-organized growth of InAs/InAlAs quantum wires on nominal (001) InP substrate and (001) InP substrates misoriented by 2 degrees, 4 degrees, and 8 degrees towards both [-110] and [110]. The influence of substrate misorientation on the structural and optical properties of these InAs/InAlAs quantum wires is studied by transmission electron microscopy and photoluminescence measurements. Compared with that grown on nominal (001) InP substrate, the density of InAs/InAlAs quantum wires grown on misoriented InP(001) substrates is enhanced. A strong lateral composition modulation effect take place in the InAlAs buffer layers grown on misoriented InP substrates with large off-cut angles (4 degrees and 8 degrees), which induces a nucleation template for the first-period InAs quantum wires and greatly improve the size distribution of InAs quantum wires. InAs/InAlAs quantum wires grown on InP (001) substrate 8 degrees off cut towards [-110] show the best size homogeneity and photoluminescence intensity. (c) 2007 American Institute of Physics.
Effects of buffer layers on the stress and morphology of GaN epilayer grown on Si substrate by MOCVD
Resumo:
Low temperature (LT) AlN interlayer and insertion of superlattice are two effective methods to reduce crack and defects for GaN grown on Si substrate. In this paper, the influence of two kinds of buffer on stress, morphology and defects of GaN/Si are studied and discussed. The results measured by optical microscope and Raman shift show that insertion of superlattice is more effective than insertion of LT-AlN in preventing the formation of cracks in GaN grown on Si substrate. Cross-sectional TEM images show that the not only screw but edge-type dislocation densities are greatly reduced by using the superlattice buffer. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The electronic structures, Rashba spin-orbit couplings, and transport properties of InSb nanowires and nanofilms are investigated theoretically. When both the radius of the wire (or the thickness of the film) and the electric field are large, the electron bands and hole bands overlap, and the Fermi level crosses with some bands, which means that the semiconductors transit into metals. Meanwhile, the Rashba coefficients behave in an abnormal way. The conductivities increase dramatically when the electric field is larger than a critical value. This semiconductor-metal transition is observable at the room temperature. (c) 2006 American Institute of Physics.
Resumo:
The shape dependence of electronic structure, electron g factors in the presence of the external magnetic field of InSb quantum ellipsoids are investigated in the framework of eight-band effective-mass approximation. It is found that as the increasing aspect ratio e, the electron states with P character split into three doublets for the different physical interaction and the light-hole states with S character come up to the top of valence bands at e = 2.6 in comparison with the heavy-hole states. In the presence of the external magnetic field, the energy splits of electron states are different for their wave function distribution direction, and the hole ground state remain optical active for a suitable aspect ratio. The electron g factors of InSb spheres decrease with increasing radius, and have the value of about two for the smallest radius, about -47.2 for sufficiently larger radius, similar to the bulk material case. Actually, the electron g factors decrease as any one of the three dimensions increase. The more dimensions increase, the more g factors decrease. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimensions. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Gallium nitride (GaN) nanorods were synthesized by nitriding Ga2O3/ZnO films which were deposited in turn on Si (111) substrates using radio frequency (RF) magnetron sputtering system. In the nitridation process, ZnO was reduced to Zn and Zn sublimated at 950 degrees C. Ga2O3 was reduced to Ga2O and Ga2O reacted with NH3 to synthesize GaN nanorods with the assistance of the sublimation of Zn. The morphology and structure of the nanorods were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED). The composition of GaN nanorods was studied by Fourier-transform infrared spectrophotometer (FTIR). The synthesized nanorods is hexagonal wurtzite structured. Nitridation time of the samples has an evident influence on the morphology of GaN nanorods synthesized by this method. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The authors report a simple but effective way to improve the surface morphology of stacked 1.3 mu m InAs/GaAs quantum dot (QD) active regions grown by metal-organic chemical vapor deposition (MOCVD), in which GaAs middle spacer and top separate confining heterostructure (SCH) layers are deposited at a low temperature of 560 degrees C to suppress postgrowth annealing effect that can blueshift emission wavelength of QDs. By introducing annealing processes just after depositing the GaAs spacer layers, the authors demonstrate that the surface morphology of the top GaAs SCH layer can be dramatically improved. For a model structure of five-layer QDs, the surface roughness with the introduced annealing processes (IAPs) is reduced to about 1.3 nm (5x5 mu m(2) area), much less than 4.2 nm without the IAPs. Furthermore, photoluminescence measurements show that inserting the annealing steps does not induce any changes in emission wavelength. This dramatic improvement in surface morphology results from the improved GaAs spacer surfaces due to the IAPs. The technique reported here has important implications for realizing stacked 1.3 mu m InAs/GaAs QD lasers based on MOCVD.