106 resultados para Degradation of phenols


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermal stability of cubic-phase GaN (c-GaN) films are investigated by photoluminescence (PL) and Raman scattering spectroscopy. C-GaN films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition. PL measurements show that the near-band-edge emissions in the as-grown GaN layers and thermally treated samples are mainly from c-GaN. No degradation of the optical qualities is observed after thermal annealing. Raman scattering spectroscopy shows that the intensity of the E-2 peak from hexagonal GaN grains increases with annealing temperature for the samples with poor crystal quality, while thermal annealing up to 1000 degrees C has no obvious effect on the samples with high crystal quality. (C) 1999 American Institute of Physics. [S0003-6951(99)04719-1].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report our recent progress of investigations on InGaN-based blue-violet laser diodes (LDs). The room-temperature (RT) cw operation lifetime of LDs has extended to longer than 15.6 h. The LD structure was grown on a c-plane free-standing (FS) GaN substrate by metal organic chemical vapor deposition (MOCVD). The typical threshold current and voltage of LD under RT cw operation are 78 mA and 6.8 V, respectively. The experimental analysis of degradation of LD performances suggests that after aging treatment, the increase of series resistance and threshold current can be mainly attributed to the deterioration of p-type ohmic contact and the decrease of internal quantum efficiency of multiple quantum well (MQW), respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The simulation and analysis of S-shaped waveguide bend are presented.Bend radius larger than 30 mm assures less than 0.5 dB radiation loss for a 4-μm-wide silicon-on-insulator waveguide bend with 2-μm etch depth.Intersection angle greater than 20° provides negligible crosstalk (<-30 dB) and very low insertion loss.Any reduction in bend radius and intersection angle is at the cost of the degradation of characteristics of bent waveguide and intersecting waveguide, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

nThermal processing of strained ln(0.2)Ga(0.8)As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It was found that rapid thermal annealing can improve the 77 K photoluminescence efficiency and electron emission from the active layer, due to removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of post-growth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The optimum growth condition of GaInNAs/GaAs quantum wells (QWs) by plasma-assisted molecular beam epitaxy was investigated. High-resolution X-ray diffraction and photoluminescence (PL) measurements showed that ion damage drastically degraded the quality of GaNAs and GaInNAs QWs and that ion removal magnets can effectively remove the excess ion damage. Remarkable improvement of PL intensity and obvious appearance of pendellosung fringes were observed by removing the N ions produced in the plasma cell. When the growth rate increased from 0.73 to 1.2 ML/s, the optimum growth temperature was raised from 460 degreesC to 480 degreesC and PL peak intensity increased two times. Although the N composition decreased with increasing growth rate, degradation of optical properties of GaInNAs QWs was observed when the growth rate was over 0.92 ML/s. Due to low-temperature growth of GaInNAs QWs, a distinctive reflection high-energy electron diffraction pattern was observed only when the GaAs barrier was grown under lower As-4 pressure. The samples with GaAs barriers grown under lower As-4 pressure (V/III ratio about 24) exhibited seven times increase in PL peak intensity compared with those grown under higher As-4 pressure (V/III ratio about 50). (C) 2001 Elsevier Science B,V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The annealing of Mg-doped GaN with Pt and Mo layers has been found to effectively improve the hole concentration of such material by more than 2 times as high as those in the same material without metal. Compared with the Ni and Mo catalysts, Pt showed good activation effect for hydrogen desorption and ohmic contact to the Ni/Au electrode. Despite the weak hydrogen desorption, Mo did not diffuse into the GaNepilayer in the annealing process, thus suppressing the carrier compensation phenomenon with respect to Ni and Pt depositions, which resulted in the high activation of Mg acceptors. For the GaN activated with the Ni, Pt, and Mo layers, the blue emission became dominant, followed by a clear peak redshift and the degradation of photoluminescence signal when compared with that of GaN without metal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A phenol-degrading. microorganism, Alcaligenes faecalis, was used to study the substrate interactions during cell growth on phenol and m-cresol dual substrates. Both phenol and m-cresol could be utilized by the bacteria as,the sole carbon and energy sources. When cells grew on the mixture of phenol and m-cresol, strong substrate interactions were observed. m-Cresol inhibited the degradation of phenol, on the other hand, phenol also inhibited the utilization of m-cresol, the overall cell growth rate was the co-action of phenol and m-cresol. In addition, the cell growth and substrate degradation kinetics of phenol, m-cresol as single and mixed substrates for A. faecalis in batch cultures were also investigated over a wide range of initial phenol concentrations (10-1400 mg L-1) and initial m-cresol concentrations (5-200 mg L-1). The single-substrate kinetics was described well using the Haldane-type kinetic models, with model constants of it mu(m1) = 0.15 h(-1), K-S1 = 2.22 mg L-1 and K-i1 = 245.37 mg L-1 for cell growth on phenol and mu(m2) = 0.0782 h(-1), K-S2 = 1.30 mg L-1 and K-i2 = 71.77 mgL(-1), K-i2' = 5480 (mg L-1)(2) for cell growth on m-cresol. Proposed cell growth kinetic model was used to characterize the substrates interactions in the dual substrates system, the obtained parameters representing interactions between phenol and m-cresol were, K = 1.8 x 10(-6), M = 5.5 x 10(-5), Q = 6.7 x 10(-4). The results received in the experiments demonstrated that these models adequately described the dynamic behaviors of phenol and m-cresol as single and mixed substrates by the strain of A. faecalis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A variety of short-lived, reactive chemical species (i.e. free radicals and excited state species) are known to be photochemically produced in natural waters. Some of these transients may strongly affect chemical and biological processes, and they have been implicated in the degradation of organic pollutants and natural organic compounds in aqueous environments. Previous studies demonstrated that the highly reactive hydroxyl radical (OH) is photochemically formed in seawater. However, the quantitative importance of this key species in the sea has not been previously studied because of past analytical limitations. By using a highly sensitive probe based on α-H atom abstraction from methanol, we were able to measure production rates and steady-state concentrations of photochemically produced OH radicals in coastal and open ocean seawater and freshwaters. The validity of the method was tested by intercalibrating with an independent, OH-specific reaction, hydroxylation of benzoic acid, and also by competition kinetics experiments. Our OH production rates and steady-state concentrations for freshwaters are in excellent agreement with those measured by previous investigators for similar waters. In contrast, for seawater, the values we measured are 1–3 orders of magnitude higher than previously predicted by models, indicating that there is a major unknown photochemical OH source (s) in seawater.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hollow deoxyribonucleic acid (DNA)/poly-L-lysine (PLL) capsules were successfully fabricated through a layer-by-layer (LbL) self-assembly of DNA and PLL on porous CaCO3 microparticles, followed by removal of templates with ethylenediamine tetraacetic acid disodium salt (EDTA). The enzymatic degradation of the capsules in the presence of alpha-chymotrypsin was explored. The higher the enzyme concentration, the higher is the degradation rate of hollow capsules. in addition, glutaric dialdehyde (GA) cross-linking was found to be another way to manipulate degradation rate of hollow capsules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A model experiment was done to clear the formation mechanism of protective layers during combustion of polypropylene (PP)/organically modified montmorillonite (OMMT) nanocomposites. The investigation was focused on the effects of annealing temperature on the structural changes and protective layer formation. The decomposition of OMMT and degradation of PP/OMMT nanocomposites were characterized by means of thermogravimetric analysis (TGA). The structural evolution and composition change in the surface region of PP/OMMT nanocomposites during heating were monitored by means of X-ray photoelectron spectroscopy (XPS), ATR-FTIR and field emission scanning electron microscopy (FESEM).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of both organically modified montmorillonite (OMMT) and Ni2O3 on the carbonization of polypropylene (PP) during pyrolysis were investigated. The results from TEM and Raman spectroscopy showed that the carbonized products of PP were mainly multiwalled carbon nanotubes (MWNTs). Surprisingly, a combination of OMMT and Ni2O3 led to high-yield formation of MWNTs. X-ray powder diffraction (XRD) and GC-MS were used to investigate the mechanism of this combination for the high-yield formation of MWNTs from PP. Bronsted acid sites were created in degraded OMMT layers by thermal decomposition of the modifiers. The resultant carbenium ions play an important role in the carbonization of PP and the formation of MWNTs. The degradation of PP was induced by the presence of carbenium ions to form predominantly products with lower carbon numbers that could be easily catalyzed by the nickel catalyst for the growth of MWNTs. Furthermore, carbenium ions are active intermediates that promote the growth of MWNTs from the degradation products with higher carbon numbers through hydride-transfer reactions. The XRD measurements showed that Ni2O3 was reduced into metallic nickel (Ni) in situ to afford the active sites for the growth of MWNTs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes (MWCNTs) were efficiently synthesized by catalytic combustion of polypropylene (PP) using nickel compounds (such as Ni2O3, NiO, Ni(OH)(2) and NiCO3 (.) 2Ni(OH)(2)) as catalysts in the presence of organic-modified montmorillonite (OMMT) at 630-830 degrees C. Morphologies of the sample undergoing different combustion times were observed to investigate actual process producing MWCNTs by this method. The obtained MWCNTs were characterized by X-ray diffraction (XRD), transmission electron microscope and Raman spectroscopy. The yield of MWCNTs was affected by the composition of PP mixtures with OMMT and nickel compounds and the combustion temperature. The proton acidic sites from the degraded OMMT layers due to the Hoffman reaction of the modifiers at high temperature played an important role in the catalytic degradation of PP to supply carbon sources that are easy to be catalyzed by nickel catalyst for the growth of MWCNTs. The XRD measurements demonstrated that the nickel compounds were in situ reduced into the Ni(0) state with the aid of hydrogen gas and/or hydrocarbons in the degradation products of PP, and the Ni(O) was really the active site for the growth of MWCNTs. The combination of nickel compounds with OMMT was a key factor to efficiently synthesize MWCNTs via catalytic combustion of PP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The degradation and flame retardancy of polypropylene/organically modified montmorillonite (PP/OMMT) nanocomposite were studied by means of gas chromatography-mass spectrometry and cone calorimeter. The catalysis of hydrogen proton containing montmorillonite (H-MMT) derived from thermal decomposition of (alkyl) ammonium in the OMMT on degradation of PP strongly influence carbonization behavior of PP and then flame retardancy. Bronsted acid sites on the H-MMT could catalyze degradation reaction of PP via cationic mechanism, which leads to the formation of char during combustion of PP via hydride transfer reaction. A continuous carbonaceous MMT-rich char on the surface of the burned residues, which work as a protective barrier to heat and mass transfer, results from the homogeneous dispersion of OMMT in the PP matrix and appropriate char produced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to clarify the effects of phenols on properties of polyesters, the blends of poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] (PHBV) with 4,4'-dihydroxydiphenylpropane (BPA) and p-tert-butylphenol (TBP) were studied. The FTIR spectra revealed that there was strong hydrogen-bond (H-bond) interaction between PHBV and both phenols. By evaluating the fraction of H-bonded C = O in the blend, it was concluded that BPA showed a stronger tendency than TBP to form H-bonds with PHBV. Accordingly, BPA formed a stronger suppression than TBP on the crystallization of PHBV. When 30 wt% BPA or 50 wt% TBP were added into PHBV, the crystallization of PHBV was completely suppressed in the DSC cooling scan. As the phenol content was increased, the T-g of PHBV/TBP blend decreased while the T-g of PHBV/BPA blend increased. This difference indicated that TBP and BPA acted as plasticizer and physical crosslinking agent, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A systematic investigation by FTIR spectroscopy was undertaken on blends of poly(propylene carbonate) (PPC) and bisphenol A (BPA). It provided direct evidence of the hydrogen bond (H-bond) between BPA O-H groups and PPC C=O groups. Using a curve-fitting method, qualitative as well as quantitative information concerning this H-bond interaction was obtained. The inter-H-bond in PPC/BPA blends was weaker than the self-H-bond in BPA. The absorptivities of the free and the H-bonded C=O groups were nearly equal. The fraction of H-bonded C=O in the blends increased with BPA content and leveled off at a value close to 40%. Finally, FTIR-temperature measurements of pure PPC and a representative blend were reported: by monitoring the peak areas of C=O absorptions, the dissociation of the inter-H-bonds and the thermal degradation of PPC were observed. It revealed that the presence of BPA clearly retarded the thermal degradation of PPC.