828 resultados para EPITAXY
Resumo:
The heterostructure of InAs/In0.52Al0.48As/InP is unique in that InAs wires instead of dots self-assemble in molecular beam epitaxy. These InAs wires have some distinctive features in their growth and structure. This paper summarizes the investigations of the growth and structural properties of InAs wires that have been performed in our laboratory recently.
Resumo:
The effect of changing Be doping concentration in GaAs layer on the integrated photosensitivity for nega- tive-electron-affinity GaAs photocathodes is investigated. Two GaAs samples with the monolayer structure and the muhilayer structure are grown by molecular beam epitaxy. The former has a constant Be concentration of 1 × 10^19 cm^-3, while the latter includes four layers with Be doping concentrations of 1 × 10^19, 7 × 10^18, 4 × 10^18, and 1 × 10^18 cm^-3 from the bottom to the surface. Negative-electron-affinity GaAs photocathodes are fabricated by exciting the sample surfaces with alternating input of Cs and O in the high vacuum system. The spectral response results measured by the on-line spectral response measurement system show that the integrated photosensitivity of the photocathode with the muhilayer structure enhanced by at least 50% as compared to that of the monolayer structure. This attributes to the improvement in the crystal quality and the increase in the surface escape probability. Different stress situations are observed on GaAs samples with monolayer structure and muhilayer structure, respectively.
Resumo:
Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.
Resumo:
A novel unselective regrowth buried heterostructure long-wavelength superluminescent diode (SLD) with a graded composition bulk InGaAs active region is developed by metalorganic vapor phase epitaxy (MOVPE). At a 150mA injection current, the full width at half maximum of the emission spectrum of the SLD is about 72nm, ranging from 1602 to 1674nm. The emission spectrum is smooth and flat. The ripple of the spectrum is less than 0.3dB at any wavelength from 1550 to 1700nm. An output power of 4.3mW is obtained at a 200mA injection current under continuous-wave operation at room temperature. This device is suitable for the applications of light sources for gas detectors and L-band optical fiber communications.
Resumo:
介绍了一种利用离子束外延(Ion-beam Epitaxy, IBE)技术制备生长高纯稀土功能薄膜的新方法. 以纯度要求不高的低成本稀土氯化物为原材料来产生大束流稀土元素离子, 通过准确控制双束合成或单束浅结注入掺杂的同位素纯低能离子的能量、束斑形状、沉积剂量与配比及生长温度, 在超高真空生长室内实现了稀土功能薄膜的高纯生长和低温优质外延. 文中除了对新方法的技术特点、实施方式和应注意的关键技术进行了阐述, 还结合CeO2, Gd2O3, GdxSi1-x等薄膜的制备研究, 讨论了离子的束流密度、剂量配比、能量和生长温度等生长参数对成膜质量的影响.
Resumo:
Homoepitaxial growth of4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates was performed at 1500℃ by using the step controlled Epitaxy. Ti/4H-SiC Schottky barrier diodes (SBDs) with blocking voltage over lkV have been made on an undoped epilayer with 32μm in thick and 2-5 × 10^15 cm^-3 in carrier density. The diode rectification ratio of forward to reverse (defined at ± 1V) is over 107 at room temperature and over 10^2 at 538K. Their electrical characteristics were studied by the current-voltage measurements in the temperature range from 20 to 265 ℃. The ideality factor and Schottky barrier height obtained at room temperature are 1.33 and 0. 905eV, respectively. The SBDs have on-state current density of 150A/cm^2 at a forward voltage drop of about 2.0V. The specific on-resistance for the rectifier is found to be as 7.9mΩ · cm^2 and its variation with temperature is T^2.0.
Resumo:
A kind of novel broad-band superluminescent diodes (SLDs) using graded tensile-strained bulk InGaAs is developed. The graded tensile-strained bulk InGaAs is obtained by changing only group-III trimethyl-gallium source flow during low-pressure metal organic vapor-phase epitaxy. At the injection current of 200 mA, the fabricated SLDs with such structure demonstrate full-width at half-maximum spectral width of 106 nm and the output light power of 13.6 mW, respectively.
Resumo:
50mm SiC films with high electrical uniformity are grown on Si(111) by a newly developed vertical low-pressure chemical vapor deposition (LPCVD) reactor.Both in-situ n- and p-type doping of 3C-SiC are achieved by intentional introduction of ammonia and boron into the precursor gases.The dependence of growth rate and surface morphology on the C/Si ratio and optimized growth conditions is obtained.The best electrical uniformity of 50mm 3C-SiC films obtained by non-contact sheet resistance measurement is ±2.58%.GaN films are grown atop the as-grown 3C-SiC/Si(111) layers using molecular beam epitaxy (MBE).The data of both X-ray diffraction and low temperature photoluminescence of GaN/3C-SiC/Si(111) show that 3C-SiC is an appropriate substrate or buffer layer for the growth of Ⅲ-nitrides on Si substrates with no cracks.
Resumo:
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get highly qualitical 4H-SiC epilayers.Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates is performed at 1500℃ with a pressure of 1.3×103Pa by using the step-controlled epitaxy.The growth rate is controlled to be about 1.0μm/h.The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope,atomic force microscopy (AFM),X-ray diffraction,Raman scattering,and low temperature photoluminescence (LTPL).N-type 4H-SiC epilayers are obtained by in-situ doping of NH3 with the flow rate ranging from 0.1 to 3sccm.SiC p-n junctions are obtained on these epitaxial layers and their electrical and optical characteristics are presented.The obtained p-n junction diodes can be operated at the temperature up to 400℃,which provides a potential for high-temperature applications.
Resumo:
Ridge-waveguide distributed-feedback(DFB) lasers with highly strained InGaAs/InGaAsP active regions,emitting at 1.78 μm were fabricated by low pressure metal-organic vapor phase epitaxy(LP-MOVPE) and tested.The lasers exhibited threshold current of 33 mA for 900 μm long cavities at room temperature.A maximum light output power of 8 mW from one facet and an external differential quantum efficiency of 7% were also obtained.In oddition,the side mode suppression ratio (SMSR) is 27.5 dB.
Resumo:
Self-organized In_(0.5)Ga_(0.5)As/GaAs quantum island structure emitting at 1. 35 (im at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs)_1/( GaAs)_1 monolayer deposition method. Photoluminescence (PL) measurement shows that very narrow PL linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In_(0.5)Ga_(0.5)As islands structure. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dot (QD) devices.
Resumo:
A 1.3μm GaInNAs resonant cavity enhanced (RCE) photodetector (PD) has been grown by molecular beam epitaxy (MBE) monolithically on (100) GaAs substrate using a home-made ion-removed dc-plasma cell as nitrogen source. A transfer matrix method was used to optimize the device structure. The absorption region is composed of three GaInNAs quantum wells separated by GaAs layers. Devices were isolated by etching 130μm-diameter mesas and filling polyamide into grooves. The maximal quantum efficiency of the device is about 12% at 1.293μm. Full width at half maximum (FWHM) is 5.8nm and 3dB bandwidth is 304MHz. Dark current is 2 * 10~(-11) A at zero bias voltage. Further improvement of the performance of the RCE PD can be obtained by optimizing of the structure design and MBE growth conditions.
Resumo:
We have studied exciton localization and delocalization effect in GaNAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy (MBE) using photoluminescence (PL) and timeresolved PL measurements. Studied results suggest that, at low temperature and under a conventional CW excitation, measured PL spectra were dominated by localized exciton (LE) emission caused by potential fluctuations in GaNAs layer. However, under short pulse laser excitation, it is different. An extra high-energy PL peak comes out from GaNAs/GaAs QWs and dominates the PL spectra under high excitation and/or at high temperature. By investigation, we have attributed the new PL peak to the recombination of delocalized excitons in QWs. This recombination process competes with the localized exciton emission, which, we believe, constitutes the "S-shaped" temperature-dependent emission shift often reported in ternary nitrides of InGaN and AlGaN in the literature.
Resumo:
Wet etching characteristics of cubic GAN (c-GaN) thin films grown on GaAs(001) by metalorganic vapor phase epitaxy (MOVPE) are investigated. The samples are etched in HCl, H_3PO_4, KOH aqueous solutions, and molten KOH at temperatures in the range of 90~300 ℃. It is found that different solution produces different etch figure on the surfaces of a sample. KOH-based solutions produce rectangular pits rather than square pits. The etch pits elongate in [1(1-bar)0] direction, indicating asymmetric etching behavior in the two orthogonal <110> directions. An explanation based on relative reactivity of the various crystallographic planes is employed to interpret qualitatively the asymmetric etching behavior. In addition, it is found that KOH aqueous solution would be more suitable than molten KOH and the two acids for the evaluation of stacking faults in c-GaN epilayers.
Resumo:
在国产第一台CEB(Chemical beam epitaxy)设备上,用GSMBE(Gas source molecular beam epitaxy)技术在国内首次研究了InGaAs/InP匹配和应变多量子阱超晶格材料的生长,用不对称切换方法成功地生长了高质量的匹配和正负应变超晶格材料,并用双晶X-射线衍射技术对样品进行了测试和分析。结果表明,我们在国产地一台CBE设备上用GSMBE技术采用非对称切换方法生长的超晶格材料质量很好。